You are here

Defence`s Feeds

MFTA: The US Navy’s New Towed Array for Naval Detection

Defense Industry Daily - Mon, 25/05/2015 - 02:01
(click to view full)

Naval technologies have advanced on many fronts, but one of the most significant is the growing roster of diesel-electric submarines that boast exceptional quietness. Some of the newer AIP (Air-Independent Propulsion) models even have the ability to operate without surfacing for a week or two at a time. In exercises against the US Navy, diesel-electric submarines have successfully ‘killed’ their nuclear counterparts, and in 2006, a Chinese submarine reportedly surprised a US carrier battlegroup by surfacing within it.

The US Navy is slowly moving to beef up anti-submarine capabilities that had been neglected since the end of the Cold War, and other navies are also beginning to adjust. One of the first areas that requires attention is improved detection. That means wider coverage areas, longer baselines, better sonar and other detection systems, and greater use of small unmanned platforms on the surface and underwater. With UUV/USV platforms still maturing, and almost every advanced navy except the Chinese getting smaller due to the cost of new warships, towed systems are a natural place to start.

The New MFTA DDG-51 modernization
(click to view full)

In the USA, towed array systems are made by a number of manufacturers: EDO/ITT, L-3, Lockheed Martin Undersea Systems, and the small specialist firm Chesapeake Science Corp. are a few of the firms involved.

Unlike a ship’s main bow-mounted sonar, towed arrays can quickly be fitted to any ship with a minimum of yard work. Towed arrays will also be necessary adjuncts to future unmanned anti-submarine vehicles, as their low weight and streamlined shape makes them usable by smaller platforms. Hence MFTA (Multi-Function Towed Array) production contracts since 2008, which are replacing America’s existing set of AN/SQR-19 TACTAS arrays.

The new AN/SQR-20 (now TB-37U) MFTA is the first new surface ship array to be built for the U.S. Navy in 25 years, and is configured as a long 3″ diameter array that can be towed behind surface ships. It is an active and passive sonar sensor, meaning it can listen silently for enemy submarines, or can send out a an active sonar ping and listen for the echoes. MFTA provides several enhancements over the existing AN/SQR-19 TACTAS, including better coverage, better detection capability, and better reliability.

The new towed array will be integrated with AN/SQQ-89Av15 underwater combat systems that are being installed aboard Arleigh Burke Class guided missile destroyers and Ticonderoga Class missile cruisers as part of their planned upgrades. It’s also slated for use on DDG-1000 Zumwalt Class “destroyers” as part of the AN/SQQ-90 dual-and sonar, and aboard the Littoral Combat Ships as part of their Anti-Submarine Warfare mission package.

WLD-1 USV

While the array is described as “towed”, it can still be helpful for the array to have some attached movement capability. One of the key technical issues faced by towed arrays is the fact that knowing the shape of the array in the water is critical to interpreting its results. Unfortunately, currents, maneuvers by the towing vessel, and a myriad of other factors can change the array’s shape in the water. Self-monitoring via a pinging device and listening “birds” clipped along the array (birds because they measure “time of flight”) is a commonly used approach to calculating the array’s shape, and some kind of monitoring approach will continue to be necessary.

Having a streamlined node on the end with some maneuvering ability of its own – a UUV, for instance – can still be quite helpful, allowing operators to adjust the array line’s shape so it remains more useful more often. The US Navy specifically declined to discuss any aspect along these lines, saying that towing characteristics and features were not for public release.

The other unmanned mobility option would be to expand coverage by attaching the relatively small arrays to unmanned vehicles, allowing a warship to cover a much larger area, and to use unmanned vehicles as quiet advance scouts.

Lockheed Martin has confirmed to DID that part of the MFTA contract included an option involving the Remote Multi-Mission Vehicle (RMMV) snorkeling unmanned surface vehicle (USV). RMMV was expected to have a significant role to play in anti-submarine warfare (as the WLD-1), but the US Navy decided to restrict it to LCS’ counter-mine warfare package. That still leaves possibilities aboard USN cruisers and destroyers, but unless the USV improves significantly, WLD-1 probably would be more of a position adjustment aid than a towing platform. Overall USV technology, on the other hand, is expected to improve significantly in the coming decades. It’s very likely that some kind of USV or UUV system will eventually be deployed with MFTA as an independent sensor set.

Contracts and Key Events CG-47 modernization
(click to view full)

Unless otherwise noted, contracts are issued by US Naval Sea Systems Command in Washington, DC, to Lockheed Martin Mission in Liverpool, NY. The division’s name changes, but it’s the same maritime sensor group.

May 25/15: Lockheed Martin has been handed a $27.3 million option for seven TB-37 multi-function towed array (MFTA) production units, as well as auxiliary equipment and support services. The work and production will be split between the US Navy and Japan under a previous Foreign Military Sale. The TB-37 is a potent anti-submarine warfare sensor, with the system offering several enhancements to the AN/SQR-19 Tactical Towed Array System which it replaces. The TB-37 Multi-Function Towed Array is the first new surface ship array to be built for the US Navy in 25 years and is configured as a long array that can be towed behind surface ships for ASW mission sets.

May 19/14: +9. Lockheed Martin Mission Systems and Training, Liverpool, NY, is being awarded a $31.8 million contract modification, exercising options for 9 TB-37/U Multi-Function Towed Array (MFTA) production units, tow cables, electro-optical slip rings, drogues, and engineering services.

$30.1 million is committed immediately, using various FY 2014 US Navy budgets. Work will be performed in Liverpool, NY (66%), Millersville, MD (33%), and Marion, Massachusetts (1%), and is expected to be complete by July 2016 (N00024-13-C-6292).

Sept 30/13: A $44.7 million fixed-price-incentive, firm-fixed-price, and cost-plus-fixed-fee contract for TB-37/U MFTAs and associated support. They’ll act as part of the AN/SQQ-89A(V)15 Antisubmarine Warfare Combat Systems on board USN DDG-51 and CG-47 cruisers.

$28.2 of the $44.7 million is committed immediately, and the contract includes options which could bring its cumulative value to $199.1 million.

Lockheed Martin confirmed that the designation has changed, but it’s the same product. TB-37/U = SQR-20. Presumably, TB-37/U systems for the DDG-1000’s SQQ-90 dual-band sonar, and the Littoral Combat Ship’s forthcoming ASW module, are all handled under separate contracts.

Work will be performed in Syracuse, NY (60%), and Millersville, MD (40%), and is expected to be complete by April 2015. This contract was competitively procured via FBO.gov, with 2 offers received by US Naval Sea Systems Command in Washington, DC (N00024-13-C-6292). Sources: FBO.gov | Pentagon DefenseLINK, Sept 30/13.

Multi-year contract & Designation changed

March 15/12: A $14.95 million contract modification to produce and support of AN/SQR-20 MFTAs. The Pentagon release specifically mentions production for the AN/SQQ-89Av15 antisubmarine warfare combat systems on board modernized US Navy cruisers and destroyers.

Work will be performed in Syracuse, NY (60%); Baltimore, MD (20%); Cleveland, OH (14%); and Phoenix, AZ (6%). Work is expected to be complete by January 2014. Contract funds will not expire at the end of the current fiscal year (N00024-08-C-6282).

March 25/11: A $7.9 million firm-fixed-price, cost-plus-fixed-fee contract modification exercises an option to produce more AN/SQR-20 MFTAs. Work will be performed in Syracuse, NY (60%); Baltimore, MD (20%); Cleveland, OH (14%); and Phoenix, AZ (6%), and is expected to be complete by January 2013 (N00024-08-C-6282). See also Military & Aerospace Electronics.

March 24/10: A $12.2 million firm-fixed-price, cost-plus-fixed-fee contract modification exercises an option to produce more AN/SQR-20 MFTAs. Work will be performed in Syracuse, NY (60%); Baltimore, MD (20%); Cleveland, OH (14%); and Phoenix, AZ (6%), and is expected to be complete by December 2012 (N00024-08-C-6282).

Dec 17/08: Lockheed Martin-MS2 in Liverpool, NY received a $15.1 million firm-fixed-price, cost plus fixed fee option under an existing contract (N00024-08-C-6282) to produce and support MFTAs for the AN/SQQ-89Av15 antisubmarine warfare (ASW) combat systems.

Work will be performed in Syracuse, NY (60%), Baltimore, MD (20%), Cleveland, OH (14%), and Phoenix, AZ (6%) and is expected to be complete by December 2012. The Naval Sea Systems Command in Washington, DC manages the contract.

June 23/08: MFTA appears to be ready to begin production. Lockheed Martin announces a $10 million contract to produce and support MFTAs for the U.S. Navy’s AN/SQQ-89 Antisubmarine Warfare Combat System. Work will be performed at Lockheed Martin’s Syracuse, NY facility, in collaboration with Chesapeake Science Corporation in Millersville, MD. Lockheed Martin release.

Nov 21/07: A 3rd revision [PDF format] is made to the RFP. Several sections clarify the structure of the production options, and restate the government’s option not to exercise them if it so chooses. With respect to the issue of the drawings raised in the Nov 5/07 amendment, it adds this language:

“1. The Government may have some of the drawings available to it in a modifiable format and to the extent such drawings are available the Government will make them available after award, as a courtesy, upon request by the successful offeror. The Government, however, will be under no obligation to provide any such drawings at all or in a given time frame, nor will the Government be under an obligation to convert any drawings into a modifiable format.”

Nov 5/07: A revised RFP (Amendment 0002), includes questions and answers that indicate a serious controversy with one of the [unnamed] bidders, who believes the competition is not level:

“We have some serious concerns with respect to the referenced competition:

a. The competition is for a “winner take all” FFP contract [rest relates to numbers produced, Navy clarified]…

b. Our competitor, Lockheed Martin contributed to the design of the Engineering Development Model and the drawing package (their CAGE code appears on some drawings). The RFP states that the drawing package is being provided for information only, but also says that if a contractor uses a drawing package or design other than provided by the Navy it will be viewed as a risk. Hence, the Government is mandating a baseline system engineered by Lockheed Martin and allowing them to bid as a supplier…

c. The Navy has provided the drawing package, with some drawings missing, in PDF format. The selected contractor will have to re-deliver a production data package… We asked for the drawing package in CAD/CAM, i.e. modifiable format, but RFP Amendment 1 denied our request. We will be at a substantial cost disadvantage in that we will have to re-develop the entire data package, whereas Lockheed can proceed with the modifiable format they already have available.

[Complaints are also raised re: incomplete test data and drawing information]

It seems to us that we are at a disadvantage with respect to our competitor who constructed the original drawing package, has built and tested an array [for which limited data was provided to others], and has insight into the revised “informational” drawing package that is the only recognized low risk approach…”

The Navy’s response involved changes in only one area – that the drawing package information was provided for information only, and that contractors had to meet the government’s requirements. Which included either using the existing MFTA design, or providing an “in-depth comparison” with the Navy’s “informational design.” RFP, incl. amendment and Q&A.

Sept 15/07: The US Navy issues a Request for Proposal for the production of up to 75 Multi-Function Towed Arrays for the AN/SQQ-89A(V) 15 Antisubmarine Warfare (ASW) Combat System. This RFP and related files listed under solicitation number N00024-07-R-6217 are issued electronically, and some controversy ensues re: the way the competition was set up. FBO advance notice.

Additional Readings

Categories: Defence`s Feeds

Hanyang HY4330

Military-Today.com - Mon, 25/05/2015 - 01:55

Chinese Hanyang HY4330 Tractor Truck
Categories: Defence`s Feeds

Damen OPV 2600 Second Generation Offshore Patrol Vessel

Naval Technology - Mon, 25/05/2015 - 01:00
OPV 2600 is the longest of four new second generation offshore patrol vessels designed by Damen Shipyards to support a wide variety of missions conducted by naval forces and coastguards.
Categories: Defence`s Feeds

Rare video exposes U.S. Special Operations helicopters at work in north Iraq

The Aviationist Blog - Sun, 24/05/2015 - 19:21
A clip filmed with a smartphone shows a formation of Special Ops helicopters at work north of Baiji in Iraq.

Although the quality of the footage is pretty bad, the clip in this post, filmed by Iraqi forces north of Baiji, Iraq, is extremely interesting.

It shows a formation of four U.S. MH-60 and two MH-47E choppers, followed by two more Black Hawks, flying at very low level during a mission somewhere in Iraq.

The helicopters belong to the US Army’s 160th Special Operations Aviation Regiment (Airborne) “Night Stalkers”, a Special Operations unit that has been quite active in the region since August 2014. More recently, the 160th SOAR took part in a “daring” raid to kill ISIS high level operative Abu Sayyaf,  in eastern Syria.

Here below you can find a couple of screenshots:

Noteworthy the helicopters are not flying under the cover of night: returning from a raid or heading towards the target?

 H/T to @guidoolimpio for the link to the video

 

Related articles
Categories: Defence`s Feeds

FAW MV3

Military-Today.com - Sun, 24/05/2015 - 01:55

Chinese FAW MV3 General Utility Truck
Categories: Defence`s Feeds

Shaanxi SX4400

Military-Today.com - Sat, 23/05/2015 - 01:55

Chinese Shaanxi SX4400 Tank Transporter
Categories: Defence`s Feeds

Audio and Video of the U.S. P-8A aircraft defying China’s Navy warnings to leave airspace over disputed islands

The Aviationist Blog - Fri, 22/05/2015 - 18:26
A P-8A Poseidon from Patrol Squadron (VP) 45 captures surveillance footage of the Peoples Republic of China (PRC) conducting land reclamation operations in the South China Sea.

On May 20, a P-8A Poseidon maritime patrol aircraft belonging to Patrol Squadron (VP) 45 conducted a routing surveillance flight over the South China Sea, where has started building an airstrip on the disputed Spratly Islands in the waters claimed by the Philippines.

During the flight, the crew of the P-8A documented several warnings, issued by China’s People’s Liberation Army Navy (PLAN), most probably on the International Emergency (“Guard”) frequency 121.5 MHz, to leave the area as the U.S. military plane was approaching their military alert zone.

Interestingly, the U.S. aircraft replies to the Chinese Navy operators urging it to leave their area “quickly” as follows:

“Station calling U.S. military plane, please identify yourself”.

Then, after receiving confirmation that it was a People’s Liberation Army Navy (PLAN) operator, the answer is always the same: “I’m a U.S. military aircraft conducting lawful military activities outside national airspace; I’m operating with due regard as required under International Law.”

The audio seems to be disturbed by some kind of jamming.

Anyway, according to the U.S. Navy, the P-8 mission documented the continued expansion of reefs which have been turned into man-made islands with airport infrastructure in the South China Sea.

 

Related articles
Categories: Defence`s Feeds

Charm to the front: some thoughts on public order policing

Kings of War - Fri, 22/05/2015 - 16:33

 

The days that followed the general election did not lack for frustrated emotion, with dissatisfaction across the political spectrum. That Saturday London’s streets played host to two significant events, in North London and Whitehall. Responding to StrifeBlog’s piece on the 9th May’s anti-austerity demonstration at the latter location, I would like to amplify the points raised regarding behaviour, particularly focusing the attention on the police and the role of theirs within the swirl of protest. Recent research on crowd behaviour and perceptions of police legitimacy suggest this is an area ripe for critical attention.

 

Protest is a fraught event. The passions which drive citizens to the streets in common voice are not to be trifled with. However, while the emotions of distress are an expected part of such events, my observations from 9th May solidified the conceptualization of the tactical relevance of another emotion, charm, and I would like to discuss here a place for it in British public order policing. It is not news to suggest that polite chat – if not outright charm – is a feature of British policing. If current research is correct, that characteristic is a significant strength against the landscape of policing practice, an asset at the strategic and tactical levels. Moving forward into a period of uncertain funding and even more uncertain political and security challenges, the need to effectively use that strength exceeds that which is merely good practice. While putting a premium on charm in public order situations might accord with the best of emerging scholarship on the subject, in fact these more critical issues may argue for its necessity.

It is first necessary to set the terms of public order policing. For the British police especially, the emotional context of protest places their role on a knife’s edge. On the one hand, there is the policing standpoint on protest. Whether any individual officer or force agrees with those passions, British policing adheres to the standard that the first objective of their efforts is to facilitate the right to protest. Before going further I should point out that I think that this is an excellent starting point for the police role in protest. On the other, hand, the “toe to toe” tactical approach means that they do so at closest proximity to the participants. That is, British public order policing is designed to operate in the face of society’s distress. The challenges of such an approach are significant and it is not unexpected that the police at times struggle to get the balance correct. Much work has been done within policing in the last several years to refine their implementation of the facilitative approach as part of their public order doctrine in response to official critique and public concern. HMIC’s reviews following the 2009 G-20 demonstrations focused on the relationship of that approach with the culture of British policing. Within that framework, and in support of facilitation at close proximity to the protest, increasing consideration is being given to how force, communications, appearance, and other markers of the policing approach to protest influence events and rights. In sum – and it is no small task – British police aim to facilitate protest within the intimate emotional space of the protesters while balancing their actions against a culture which relies upon public consent. Influencing all of this is a growing body of literature regarding the police role in crowd behaviour. The damaging correlation between police hostility and discord or disorder is becoming clear, whereas the banner of respect is linked to positive shaping of events. [1] Events at Whitehall offer an excellent perspective on the role of demeanour – of all involved but especially for the police on the frontlines – as it was a dominant theme of what I saw over the last two hours of the day’s events. Through that frame I would like to consider a few key points which were defined by the interaction of police and protester emotion.

To begin, the onset of the disorder sustains the focus on the interaction between police and protester across emotion and action. From the videos widely circulated online it is possible to form several impressions. Key among them was that whereas the police intention at the start was to facilitate the march decrying the politics of austerity that aim was derailed by events. A minor incident which should not but does often alter the course of events, the “snatch,” (4:05), was the immediate spark to the day’s extant tinder, unleashing the disorder which rightly or wrongly has characterized impressions of the event. In itself, the arrest did not merit the response it invited. But this is the nature of such events and large groups, that simmering passions await the least inspiration. It is the sort of phenomenon which led the United States Marine Corps to imagine the character of the Strategic Corporal. That is, under the right circumstances even minor tactical actions can have significant strategic and political effect. I do not suspect that the officers involved in the arrest intended to unleash the havoc which followed, but rather were simply focused on the task at hand. And what the video fails to show is the act which had led these officers to decide this individual needed to be apprehended at that moment.

Omitting negativity and judgement, it is worth consideration of the balance of value in taking such actions during protest. There is very obviously a trade-off in costs and risks for certain activities in public order policing. Where crowd perceptions of legitimacy and police action matter, especially with regard to their behaviour in the moment and the hair’s breadth difference between calm and disorder, how arrests are carried out is a matter for discussion, with minimum distress a necessary element of success.

But if the early afternoon’s events sustained the negative consequences of the relationship between police behaviour and crowd dynamics in protest, the evening offered a glimpse at the potential of the positive influence. Having spent the afternoon trapped in the office, listening wistfully to the sound of NPAS London circling nearby, when my day’s writing completed at six I made it to Whitehall for final act of the day’s drama ending at Westminster Bridge.

Things had gone to disorder earlier, but by this time in the day the mood had calmed considerably. Although many of the police were in public order kit at that point, this was not how the policing had begun the day. Despite the earlier disorder, there still remained on the streets officers in nothing more than their hi-viz jackets, stab vests and soft caps. Nevertheless, the tone along the lines was at least polite, if not friendly, most officers in helmets had the face shield up and were perfectly willing to engage members of the public. [2] I will admit that in support of my research I take full advantage of the opportunity this presents. But even some of the protesters were enthusiastic with their engagement, and these interactions of the police and protesters was instructive to watch. One exchange stands out. When challenged to confront what had happened there earlier in the day and whether what the police had done was right or fair, one officer smiled and replied “I don’t know, we came down from Walthamstow an hour ago.” The failed attempt to burden the officers with blame was poignant and defused somewhat the protester’s confrontation with the officer. It also was a moment to consider what sort of cognitive impression the day’s contrasting and similar activities would leave on some of the officers.

 

Protester chats with an officer.

 

After an hour or so, the decision was taken to end the protest in front of the MoD. I was made aware of this with a polite notification by one of the officers. Although tempers had moderated he did not expect the remaining protesters to take the news well. As I was stood in the path of the intended police movement, it was clear that members of the public wishing to do so would be allowed to pass around the police lines. The officer’s assessment of the temper of the crowd was not inaccurate, and in response to the effort to disperse the lingering crowds the police again had to contend with emotion. Meeting police instructions for the crowd to step back, the chants of “Fuck the Police” echoed down Whitehall. Finding myself behind the police line of march, as they began to walk the crowds west I was able to observe the process from this perspective. The struggle here was not only to move the protesters but to keep control over the metal barriers which had been deployed along the streets. Used by the protesters to confound police efforts to move them along, it was a mildly frantic effort to move the barriers to the rear. Of the many things which the public order leader on the street must consider in such moments, even when the disorder is minor, this is not likely to enter the mind of anyone save those with practical experience. This effort was handled by every officer present and possible, rank notwithstanding.

 

Following the police line.

 

Perhaps I followed a little too closely, because at one point, a rather flustered Chief Inspector turned and noticed I was right behind their lines. Finding that I was not a member of the press, she requested that move off to the side a bit. I am relentless about my research, but equally I do not wish to become part of the problem, so to the sidewalk I went. The view was just as good, if not quite as direct. From there I watched the last push to move the protesters towards Parliament Square. Not long after, with the remnants of the protest finally arrived at Westminster, the police quickly regrouped and dispersed them across the bridge.

Observing at close range, across a variety of interactions and emotions, the contours of British policing practice and scholarship on crowd psychology and public perceptions of legitimacy merged conceptually. Watching the exchanges between police and crowd, the strength of this culture of policing which provides ample space for individual diplomacy to shape events should be reckoned as a strength against the academic findings on legitimacy, compliance, and consent generally. [3] And it seems to me that public order policing specifically could harness the influence of this geniality. Without being flippant or unserious, it is worth considering what value there would be in the first line of action in public order policing was chat. Echoing the ancient Roman military principle of placing experience to the rear to shore up the resolve of less experienced troops, in this case we would call for charm to the front to minimize the friction between police and protesters, moderate the latter’s distress of the protesters and public, thus lessening the public order burden overall. The police position in close proximity with protesting crowds is a challenge, but it offers as well an opportunity. Arrayed as the face of protest policing in its first effort, chatters and charmers could do much to maintain the equanimity of those they confront. The most recent protest was not the first I had seen of the value of such efforts. During the Guy Fawkes demonstrations last November I stopped to watch a line of officers manage the flow of demonstrators. You cannot see it in the picture, but the officers have their visors up and are smiling [4] and talking to several of whom they are keeping from heading towards Westminster and Trafalgar Square. The effects were palpable. At the tactical level in the moment, although thwarted in their attempt to join the fray, the individuals were largely mollified to have at least an open “ear” to their sentiments and reasons for protest. More broadly, considering the terms of legitimacy, by treating these individuals with respect, explaining the police reasons for stopping their progress, and listening to their cause, these officers served the legitimacy and perception of policing.

 

Smiling officers chat with protesters.

 

Balancing the needs of protest and expression against those for order and safety has never been easy and seems only to be increasing in complexity. The British police will have to confront this, as well as the broader challenges to their relationships with communities and ability to work effectively as a function of that. Seemingly out of place within this world, it may be that charm is a necessary part of the public order kit.

 

 

Notes

1 See, eg, Lawrence Singer, “London Riots: Searching for a Stop,” Policing, V7, No. 1, pp 32-44.

2 The number of times I watched an officer ask politely several times for a protester to do something was remarkable. Nothing anyone was asked approached onerous, but the mood was simply to oppose.

3 See, eg, Andy Myhill and Paul Quinton, “It’s a fair cop? Police legitimacy, public cooperation and crime reduction,” NPIA, September 2011.

4 This accords with research on kit, as a reduction in force can signal positively to a protest crowd and facilitate communication. See, eg, Stephen Reicher, Clifford Stott, Patrick Cronin, and Otto Adang, “An integrated approach to crowd psychology and public order policing,” Policing, Vol 27, No. 4, 2004.

Categories: Defence`s Feeds

Four U.S. A-10 Thunderbolt jets have deployed to Slovakia

The Aviationist Blog - Fri, 22/05/2015 - 15:28
A-10s continue their tour of eastern Europe.

Four A-10 Thunderbolt II jets and approximately 40 airmen from the U.S. Air Force Theater Security Package, deployed to Sliac Air Base, Slovakia, May 16, in support of Operation Atlantic Resolve.

The contingent of the 354th Expeditionary Fighter Squadron have taken part to a joint training with the Slovakian air force whose aim was to improve interoperability in allied air operations and multinational close-air-support operations.

According to U.S. Air Force Gen. Frank Gorenc, U.S. Air Forces Europe and Air Forces Africa commander: “The U.S. Air Force’s forward presence in Europe, augmented by a rotational force like the TSP, allows us to work with our allies to develop and improve ready air forces capable of maintaining regional security.”

The 354th EFS is currently deployed to Campia Turzii, Romania, but takes part in “micro deployments” across eastern Europe to reassure local NATO allies and show them the U.S. commitment: since they started their six-month tour of duty in Europe, the 12 TSP “Warthog” attack planes from the 355th Fighter Wing, Davis-Monthan AFB, Arizona, have been stationed in Germany, UK, Poland, Romania, and Estonia.

During their stay in Slovakia, the A-10 worked with the Slovakian air force L-39s in joint close air support training with JTACs (joint terminal attack controllers).

Image credit: U.S. Air Force

 

Related articles
Categories: Defence`s Feeds

France hosts EAATTC course in Orléans

EDA News - Fri, 22/05/2015 - 09:15

This year’s second edition of the European Advanced Airlift Tactics Training Course is taking place in Orléans, France, 18-29 May. It gathers transport aircraft from five European Member States training together to increase interoperability.


The main objectives of this course initiated by the European Defence Agency, run by the European Air Transport Command (EATC) and hosted for the first time by the French air force were presented to a group of Distinguished Visitors on 21 May. The EAATTC series of events aims to provide air transport crews with a robust airlift tactics syllabus in order to enhance interoperability between European air forces.

EAATTC15-2, the 2nd of three similar courses to be held in 2015, put the emphasis on formation-flying techniques and procedures. The complexity of the missions flown during the event increases over the course of the exercise, and graduating crews are presented with an official certificate at the end of the event.

The French air force has been extremely supportive in the organisation of EAATTC15-2 and is now delivering a top-level training in close cooperation with the EATC “, EDA Course Director Michele Rega underlined during the DV Day. “Organised as part of the wider European Air Transport Fleet partnership, the EAATTC series of events makes a tangible and long-lasting contribution to the increase of military airlift capabilities in Europe”, he added.


More information

 

Categories: Defence`s Feeds

Military cooperation drives Arctic affairs, not Defence issues

DefenceIQ - Fri, 22/05/2015 - 06:00
Activity in the Arctic has been gradually increasing for the last few years for such things as adventure tourism, shipping exploration and resource exploitation. The opportunities in the region have caused a number of nations to take note and as a result, cooperation between the Arctic
Categories: Defence`s Feeds

If the AF Dumps Them, Boeing Wants to Resell A-10s to Others | Turkey Wants more Phalanx | India, Israel Mull Joint Surface-to-Air Missile

Defense Industry Daily - Fri, 22/05/2015 - 04:50
Americas

Europe

  • Turkey has requested upgrades for its Phalanx close-in weapon systems, as well as four new systems, in a potential $310 million deal. The deal would also include Remote Weapons Stations, equipment, parts and training, as well as contractor (Raytheon) support. The Phalanx has been exported to several countries, with Australia recently requesting an upgrade package, with the UK and South Korea having imported the system, alongside other international customers. The CIWS is designed to provide a final tier defensive capability, with radar guiding a cannon to shoot down missiles and aircraft.

  • France is setting aside $1.7 billion to acquire new equipment over the next four years, according to reports Thursday. A portion of this is earmarked for 4 C-130 transports, as well as seven additional Tiger helicopters, to bring the total number ordered to 67. France recently increased its defense budget by 4%, representing €3.8 billion. The model of C-130 expected to be procured is either the J or K model.

Middle East

Asia

  • Alongside the news that India is pursuing closer ties to South Korea’s shipbuilding industry, the country is also reportedly talking to Russia regarding potential joint construction of warships based on the Russian Admiral Grigorovich class frigates. Russia has previously built six warships for the Indian Navy.

  • India and Israel are reportedly in the final stages of organizing a deal which will see the two sides jointly develop a new medium-range surface to air missile, following reports earlier this month that confirmed that the two sides were in negotiations.

  • South Korean and US forces will form a joint division next month, in what the military says is a response to threats by the North. However, this was originally announced last September. The division’s size has not been disclosed, however the number will be evenly split between the US and South Korea, combining a brigade from the South Korean Army and one from the U.S. 2nd Infantry Division.

  • India has successfully landed a Mirage 2000 fighter on a highway in a test of a plan to use India’s roadways as emergency landing strips. Other nations use this strategy, including Switzerland, Germany and Sweden. Highways need to be adapted in order for aircraft to land – aside from the obvious lack of chicanes, they require lighting to be at ground level, with no telephone or electricity pylons in the vicinity.

Today’s Video

  • Footage of China’s Xian H-6K flying over the Miyako Strait for the first time on Thursday. The most advanced variant of the H-6 bomber, a copy of the Russian Tupolev Tu-16, the new model boasts several upgrades over previous models. Thursday’s drill is likely to scare Japanese defense planners, given the range of the bomber and the proximity of Thursday’s flight to Okinawa.

Categories: Defence`s Feeds

Phalanx CIWS: The Last Defense, On Ship and Ashore

Defense Industry Daily - Fri, 22/05/2015 - 04:38
Phalanx, firing
(click to view full)

The radar-guided, rapid-firing MK 15 Phalanx Close-In Weapons System (CIWS, pron. “see-whiz”) can fire between 3,000-4,500 20mm cannon rounds per minute, either autonomously or under manual command, as a last-ditch defense against incoming missiles and other targets. Phalanx uses closed-loop spotting with advanced radar and computer technology to locate, identify and direct a stream of armor piercing projectiles toward the target. These capabilities have made the Phalanx CIWS a critical bolt-on sub-system for naval vessels around the world, and led to the C-RAM/Centurion, a land-based system designed to defend against incoming artillery and mortars.

This DID Spotlight article offers updated, in-depth coverage that describes ongoing deployment and research projects within the Phalanx family of weapons, the new land-based system’s new technologies and roles, and international contracts from FY 2005 onward. As of Feb 28/07, more than 895 Phalanx systems had been built and deployed in the navies of 22 nations.

The Phalanx Platform: Competition, Upgrades & Developments click for video

The MK 15 Phalanx system was originally developed as a last-ditch defense against enemy missiles, and possibly aircraft. It weighed in at around 13,600 pounds, and carries 1,550 rounds of 20mm ammunition. As radars have improved, and electronics have become both smaller and more powerful, the system has been improved to defend against a wider range of threats.

Block 1, Baseline 2. Uses high pressure air instead of hydraulics to release the rounds, boosting the MK 15’s firing rate from 3,000 rounds per minute to 4,500. That gives the system 21 seconds of full-rate firing before a reload is required, enough for several engagement sequences.

Phalanx maintenance
(click to view full)

Block 1B. This is the new standard for the US Navy, and the baseline for SeaRAM missile systems. Block 1B adds day/night FLIR optics that boost performance against drones, small boats, and missiles with low radar cross-sections, while boosting angle tracking against conventional targets. For conventional MK 15s, the gun barrels are tweaked, and new MK224 “Enhanced Lethality Cartridge” (ELC) ammunition has a 48% heavier tungsten penetrator that maximizes the effect of the small 20mm round.

The US Navy wants to be an all-1B fleet by 2015, at a conversion cost of about $4.5 million per unit. A number of allies are following that lead within their own time frames. Paul Gilligan, head of platform integration for Raytheon’s UK subsidiary, was quoted saying that:

“This upgrade is vitally important, especially in the context of the evolving threats worldwide… It provides protection to ships and their crews against an increased number of threats including small, fast gunboats; standard and guided artillery; helicopters; mines and a variety of shore-launched, anti-ship missiles.”

Block IB Baseline 2. Radar modifications swap out some hard-to-get analog components for digital off-the-shelf signal processing electronics, a new signal source and mixer, and a “surface mode” software upgrade that improves performance against targets on or near the water’s surface.

The US Navy wants to standardize at this level by 2019, using upgrade kits that cost just under $1 million.

Phalanx: New Frontiers SeaRAM
(click to view full)

The high speed and hence low warning time provided by many supersonic anti-ship missiles are also an evolving concern for global navies. Given the Phalanx’s limited range of just a couple of miles, coping with saturation attacks by missiles traveling at speeds of 0.5 – 1 mile per second requires layered defenses. To that end, the MK 15 Phalanx Block 1B’s mountings and electronics are also the base platform for the SeaRAM short range anti-air missile system. Unlike vertically-launched missiles, the SeaRAM’s RIM-116 missile is fired on a flat trajectory from an 11-round launcher. That saves precious seconds compared to vertical launch, allowing the system to provide an intermediate zone of defense between Phalanx guns and medium-range vertically-launched missiles like the RIM-162 Evolved Sea Sparrow or SM-2.

RIM-116 missiles can also be used against surface targets, and a number of ships use RAM or SeaRAM systems instead of standard Phalanx guns.

Another option to extend the system’s range involves an entirely new technology: lasers. Kevin Peppe, Raytheon’s Phalanx program director, has said that “a robust but relatively low power, low beam-quality commercial laser” is under investigation. It could offer an effective range about 3 times that of the existing M61A1 20mm gun, along with lower life-cycle costs and fewer worries about civilian casualties when used on land. Even so, this concept is a long way from becoming a practical battlefield weapon. More powerful solid-state lasers will probably be required in order to make the concept feasible against the full range of threats, and other complications like the effects of fog on lasers, and stopping power issues, must also be overcome.

Land, Ho! C-RAM/ Centurion Phalanx C-RAM
(click to view full)

One area of clear progress for the Phalanx system is on land. Back in June 2005, “Phalanx R2D2s to Counter Land Mortars” drew attention to the US Army’s land-based version, imaginatively known as the “Land-based Phalanx Weapon System” and also known as MK 15 MOD 29 Centurion. The MK 15 MOD 29 Centurions are Block 1B CIWS weapon systems mounted on low-boy trailers, with self contained diesel electric power and cooling water.

Centurion fires explosive rounds that self-destruct if they don’t hit a target, so that falling 20mm bullets don’t kill people in the base itself or in nearby populated areas.

Unofficially, many refer to these weapons as “R2D2s,” after the Star Wars robot they resemble. Originally developed to defend US bases against mortar attack, these trailer-mounted weapons could also provide defensive options against the kinds of rocket attacks encountered in Round 1 of Israel’s 2006 war with Hezbollah, Iran & Syria. This appears to be a spiral development contract, with fielding of interim solutions as development progresses.

AN/TPQ-36 Firefinder

Centurion can reach beyond its own array and use other target acquisition sensors to detect and track fired rounds, including Northrop Grumman’s AN/TPQ-36 short-range Firefinder radar and the Lightweight Counter Mortar Radar.

C-RAM (Counter Rockets, Artillery and Mortars) is both a term used to refer to Centurion’s general role, and a specific command and control program that makes use of the weapon. The fire-control subsystem Northrop Grumman Mission Systems provides for C-RAM uses software modified from their Forward Area Air Defense Command and Control (FAAD C2) system, which ties together the sensors and weapons of the Army’s short-range air-defense battalions. Northrop Grumman is the prime contractor for FAAD C2, which is operational throughout the world and has been especially critical to homeland security efforts in the Washington, DC area.

Once a threat is detected by Army sensors FAAD C2/C-RAM triggers audio and visual alarms sound to warn exposed soldiers. A fire-control subsystem predicts the mortar’s flight path, prioritizes targets, activates the warning system, and provides cueing data to help Centurion defeat the mortar round while still in the air.

Centurion has been deployed by the USA, and Britain. In October 2008, Raytheon and Oshkosh unveiled the Mobile Centurion, which mounts the system on a hybrid-electric HEMTT A3 heavy truck.

Phalanx: Competitors Thales Goalkeeper
(click to view full)

Phalanx is not alone on the market. Its principal competitor is the Thales Nederland Goalkeeper system, which uses the same GAU-8 30mm tank-killer gatling gun mounted on the A-10 Thunderbolt close support aircraft, and a dual frequency I/K-band track while scan radar. The GAU-8/A offers a firing rate of 4,200 rounds per minute, and the heavier projectiles offer more hitting power, which may help stop fragments of a supersonic missile from hitting a ship and doing damage. On the flip side, Goalkeeper takes up a larger footprint of space on board ship, and requires significant “deck penetration” and integration instead of being a bolt-in offering like Phalanx. The Goalkeeper is a distant second in the market, but it has a solid foothold. It’s currently in service with the British Royal Navy, as well as Belgium, Chile, the Netherlands, Portugal, Qatar, South Korea, and the UAE.

There are no reports of a 30mm Phalanx, but Raytheon is taking other steps to keep its platform on top of the market, and relevant to modern threats.

Phalanx Contracts and Key Events

Unless otherwise specified, all contracts are issued by the US Naval Sea Systems Command in Washington, DC to Raytheon Co. in Tucson, AZ.

FY 2014 – 2015

Korea buys Block 1Bs for FFX frigates; Japanese multi-year support; Australia requests upgrades; Other contracts. MK15, HMCS Ottawa
(click to view full)

May 22/15: Turkey has requested upgrades for its Phalanx close-in weapon systems, as well as four new systems, in a potential $310 million deal. The deal would also include Remote Weapons Stations, equipment, parts and training, as well as contractor (Raytheon) support. The Phalanx has been exported to several countries, with Australia recently requesting an upgrade package, with the UK and South Korea having imported the system, alongside other international customers. The CIWS is designed to provide a final tier defensive capability, with radar guiding a cannon to shoot down missiles and aircraft.

Oct 30/14: Japan. Raytheon announces a multi-year, $205 million bulk-buy contract to provide Phalanx upgrade kits, support equipment, and hardware spares to the Japan Maritime Self-Defense Force (JMSDF). Sources: Raytheon, “Raytheon awarded $205 million Phalanx upgrade contract”.

Japan: multi-year support

Oct 14/14: Australia. The US DSCA announces Australia’s formal export request for up to 3 Phalanx Block 1B Baseline 1 to Block 1B Baseline 2 upgrade kits; overhaul and upgrade of up to 9 Phalanx Block 1A mounts to Block 1B Baseline 2 systems; 11 Remote Control Stations; 11 Local Control Stations, spare and repair parts; support equipment; test equipment; personnel training and training equipment; publications and technical documentation; and other forms of US Government and contractor logistics and technical support.

The principal contractor will be Raytheon Missile Systems Company in Tucson, AZ, and the estimated cost is up to $76 million. Implementation of this proposed sale will not require the assignment of any additional U.S. Government or contractor representatives to Australia. Sources: US DSCA #14-50, “Australia – Close-In Weapon System Block 1B Baseline 2 Upgrade”.

DSCA request: Australia

Sept 26/14: Support. Raytheon Co. in Tucson, AZ, receives a $15.5 million contract modification, which buys spares for Land-based Phalanx systems. All funds are committed immediately, using FY 2013 and 2014 US Army budgets.

Work will be performed in Williston, VT (23.4%); Louisville, KY (16.9%); Andover, MA (11.6%); Grand Rapids, MI (6.2%); Phoenix, AZ (4.5%); Tucson, AZ (3%); and other locations under 1% (34.4%), and is expected to be complete by February 2017. US Naval Sea Systems Command, Washington, DC manages the contract (N00024-13-C-5406).

June 27/14: Support. Serco Inc. in Reston, VA, received a $31.2 million cost-plus-fixed-fee/ firm-fixed-price, indefinite-delivery/indefinite-quantity contract for Close-In Weapons System (CIWS) waterfront installation support. they’ll help with installation of Ship Alterations, Ship Change Documents, and Ordnance Alterations for Phalanx systems on US Navy and US Coast Guard vessels, and for the US Army. Only $114,000 is committed immediately, with the rest awarded as required.

Work will be performed in Norfolk, VA (41%); San Diego, CA (30%); Pearl Harbor, HI (5%); Everett, WA (6%); Mayport, FL (6%); and various overseas ports (12%); and is expected to be complete in June 2017. This contract was competitively procured via FBO.gov with 3 offers received by the US Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division in Indian Head, MD (N00174-14-D-0028).

May 22/14: Support. Raytheon in Tucson, AZ receives a $115.5 million contract modification for MK15 Phalanx upgrades and conversions, system overhauls and associated hardware.

All funds are committed using various FY 2013 & 2014 budgets, with $43.6 million expiring on Sept 30/14. Work will be performed in Williston, VT (13%); Melbourne, FL (9%); Andover, MA (6%); Louisville, KY (5%); Tempe, AZ (5%); Pittsburgh, PA (5%); Ottobrunn, Germany (5%); Bloomington, MN (3%); Ashburn, VA (3%); Phoenix, AZ (3%); El Segundo, CA (2%); Hauppauge, NY (2%); Syracuse, NY (2%); Salt Lake City, UT (2%); Joplin, MO (2%); Bracknell, United Kingdom (2%); Grand Rapids, MI (1%); Norcross, GA (1%); and various other locations less than 1% each (29%); it is expected to be completed by September 2017. US NAVSEA in Washington, District of Columbia, is the contracting activity (N0024-13-C-5406).

Feb 24/14: South Korea. Raytheon announces a $123 million Direct Commercial Sale (DCS) contract to deliver 9 Phalanx Block 1Bs for installation aboard the ROK Navy’s FFX Batch II light frigates, and aboard the AOE II successors to their 3 Cheonji Class fast combat support ships. Phalanx deliveries will begin in 2016, and are scheduled to be complete in 2022.

DCS contracts are subject to different announcement rules than Foreign Military Sale contracts, and are managed directly by the buyer instead of by a US military surrogate. This is Raytheon’s largest DCS contract for Phalanx systems, and it was actually signed in Summer 2013. Sources: Raytheon, “Raytheon awarded $123 million Phalanx contract from Republic of Korea”.

9 Block 1Bs for ROK FFX

Jan 3/14: Support. Raytheon in Tucson, AZ receives a $52.1 million Design Agent Engineering and Technical Support Services modification for maintainence of, and improvements to, the Mk15 Phalanx, Land-based Phalanx, and SeaRAM weapon systems.

Work will be performed in Tucson, AZ, and is expected to be complete by January 2015. $12.5 million is committed immediately from a wide array of USN FY 2014 and FY 2013 R&D, weapons, and shipbuilding budget lines, plus a US Army budget. Of that, $4 million will expire on Sept 30/13 (N00024-12-C-5405).

FY 2012 – 2013

British order; US upgrades. Target shoot-down
(click for video)

Sept 10/13: FY 2013-14. A $136.2 million contract to overhaul and upgrade 19 MK 15 Phalanx systems, and produce 4 new SeaRAM systems. This contract provides purchases for the U.S. Navy (80%), Japan (15%), the US Army (4%) and Pakistan (1%) under the foreign military sales (FMS) program; and all funds are committed immediately. $55 million will expire at the end of the current fiscal year, on Sept 30/13.

Another $94.8 million in options exist for a FY 2014 buy of 12 more Phalanx upgrades, and another 4 SeaRAM systems, to bring the total contract to $231 million.

Work will be performed in Louisville, KY (26%); Anaheim, CA (16%); Melbourne, FL (11%); Dayton, OH (11%); Syracuse, NY (10%); McKinney, TX (5%); Andover, MA (5%); Bloomington, MN (5%); Radford, VA (5%); Salt Lake City, UT (3%); and Tucson, AZ (3%), and is expected to be complete by September 2017. This contract was not competitively procured in accordance with FAR 6.302-1(a)(2)(iii) “one responsible supplier” provisions (N00024-13-C-5406). Sources: Pentagon | Raytheon Sept 11/13 release.

FY 2013 order

Oct 23/12: 5 for RFA. Raytheon signs a GBP 42.8 million (about $68.6 million) contract to deliver 5 Phalanx Block 1B systems to Britain, beginning in 2013. Installation and in-service support will be provided by Babcock Marine.

The weapons are destined for Royal Fleet Auxiliary support vessels. At the moment, Raytheon’s Phalanx system is installed on 14 Royal Navy vessels, including their 6 new Type 45 destroyers. Other British ships use Thales’ Goalkeeper 30mm system. Royal Navy | Raytheon.

British order

May 17/12: FY 2012. Raytheon in Tucson, AZ receives a $57.9 million contract modification, covering FY 2012 requirements for MK 15 Phalanx Close-In Weapon Systems (CIWS). It includes Phalanx Block 1B BL2 upgrade kits and conversions; MK 15 Mod 31 CIWS SeaRAM missile upgrade kits and conversions in support of Austal’s forthcoming LCS 10 and 12; 2 Phalanx Block 1Bs for the forthcoming DDG 116 destroyer; MK 15 CIWS hardware product improvements and ancillary equipment; Block 1B Ordalt (Ordnance Alternation) kits; and MK 15 CIWS Block 1B Class A overhauls.

Raytheon’s release cites 9 Phalanx overhauls and upgrades, 20 Phalanx radar upgrade kits, and 2 SeaRAM systems that use the Phalanx system as the chassis for an 11-shot RIM-116 short-range anti-aircraft missile launcher, instead of a 20mm gatling gun.

Work will be performed in Louisville, KY (39%); Germany (12%); Palm Bay, FL (12%); Tucson, AZ (9%); Pittsburgh, PA (8%); Burlington, VT (6%); Andover, MA (4%); Syracuse, NY (4%); Long Beach, CA (1%); Radford, VA (1%); Bloomington, MN (1%); Salt Lake City, UT (1%); Norcross, GA (1%); and New Albany, IN (1%); and is expected to be complete by September 2015. $24.2 million will expire at the end of the current fiscal year, on Sept 30/12 (N00024-10-C-5427).

FY 2012 order

FY 2011

Japan; South Korea; Poland; UK. MK.15 IB on JS Hyuga
(click to view full)

Dec 27/11: Support. A $45.6 million cost-plus-fixed-fee contract for Phalanx, SeaRAM, and Land-based Phalanx design agent engineering and technical support services covering overall maintainability, reliability, and improvements. The contract is initially funded with $726,000, with more to be allocated as needed.

Work will be performed in Tucson, AZ, and is expected to be completed by January 2013. This contract was not competitively procured by US NAVSEA in Washington, DC (N00024-12-C-5405).

Sept 12/11: Raytheon signs a $65.5 million Direct Commercial Sale contract to deliver 5 Phalanx Block 1B Close-In Weapon Systems to the Republic of Korea Navy for the new 3,200 ton Ulsan-1 Class FFX inshore patrol frigates.

The contract calls for the systems to be installed starting in April 2013, and represents Phalanx’s largest sale to the ROK fleet – which generally uses Thales’ larger 30mm Goalkeeper instead. Raytheon.

South Korea: FFX buy

Aug 31/11: Support. A 5-year, $162.2 million not-to-exceed fixed-price requirements contract for performance based logistics support for the Phalanx CIWS. This announcement includes service to the governments of Australia, United Kingdom, New Zealand, Japan, Poland, and Bahrain, which will be issued as separate delivery orders, on an as-required basis.

Work will be performed in Louisville, KY, and is expected to be completed August 2016. This contract was not competitively procured pursuant to FAR 6.302-1, by US NAVSUP Weapon Systems Support in Mechanicsburg, PA (N00104-11-D-ZD43).

Aug 25/11: FY 2011. A not-to-exceed $161 million contract modification to previously awarded contract for MK 15 Mod 31 SeaRAM systems in support of Independence Class ships LCS 6 Jackson and LCS 8 Montgomery, and Japan’s “DDH 2405 helicopter destroyer”; as well as Phalanx CIWS Block 1B class “A” overhauls, and land-based Phalanx Weapon System class “A” overhauls.

The SeaRAM systems differ from other RAM launchers by having the full Phalanx enclosure, including the accompanying radar, as well as added infrared sensors. This creates a bolt-on missile system that can be operated semi-autonomously, or integrated and coordinated via the ship’s combat system. In exchange, it holds just 11 missiles in its launcher, instead of 21. DID covers it as a separate system.

As for Japan’s “DDH-2405,” this is the first ship of Japan’s new 22DDH project to field 800 foot, 30,000t vessels that are larger than its existing 18,000t Hyuga Class. These ships are properly characterized as escort carriers, but Japan’s constitution forbids them from owning carriers. The SH-60 Seahawk helicopters on board JMSDF Hyuga and JMSDF Ise certainly proved themselves in the wake of the 2011 tsunami, however, which should mute any domestic criticism.

The Pentagon adds that Phalanx CIWS is currently installed on approximately 152 US Navy and 14 US Coast Guard ships, and is in use in 23 foreign navies. Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (9%); Germany (7%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburgh, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%). Work is expected to be complete by September 2015, but $90.7 million will expire at the end of the current fiscal year, on Sept 30/11 (N00024-10-C-5427).

FY 2011: USA, (Japan)

Aug 1/11: Support. A $7 million contract modification for MK 15 Phalanx engineering and technical services to the US military, and the governments of Japan and Saudi Arabia (1%) under the Foreign Military Sales Program. Work will be performed in Tucson, AZ, and is expected to be complete by April 2012. $200,000 will expire at the end of the current fiscal year, on Sept 30/11 (N00024-07-C-5437).

July 26/11: Poland submits a DSCA notice for service life extensions of its FFG-7 frigates, which includes upgrades to its MK 15 systems from Block 0 to Block 1B/ Baseline 2. Read “Poland to Extend, Improve its FFG-7 Frigates” for full coverage.

Poland request

June 21/11: UK. Babcock International Group announces the pending qualification and testing of Raytheon’s Phalanx 1B 20mm close-in weapon system on HMS Daring. The Type 45 air defense destroyers were not delivered with secondary defensive systems for use against UAVs, small boats, and incoming missiles, so the pending qualification will help to patch the gaps in their defenses.

Babcock will supervise the installation of 2 systems in HMS Daring at Portsmouth Naval Base, as a lead-in to Naval Weapon Sea Trials (NWST), including a towed target firing. Most British ships have used Thales larger 30mm Goalkeeper system, but the Phalanx is an easier and cheaper “bolt-on” addition. Babcock’s previous Phalanx installations have been upgrades on the Type 42 destroyer HMS York, and the fleet replenishment ship RFA Fort Victoria.

April 29/11: The US Defense Security Cooperation Agency announces [PDF] Britain’s official request for Ordnance Alteration Kits for 36 MK 15 Phalanx Close-In Weapon System (CIWS) upgrade (Ordnance Alternation, or OrdAlt) kits. The request includes 20 kits for converting Phalanx Block 1A systems to Block 1B Baseline 2, and 16 kits that raise systems from Block 1B Baseline 1 to Baseline 2. Spare and repair parts, support equipment, personnel training and training equipment, publications and technical documentation, software support, and other US government and contractor support are also included. The estimated cost is up to $137 million, but exact costs will depend on a negotiated contract.

The Block 1B Baseline 2 upgrades improve optical and radar close-in detection, tracking and engagement, and extend Block 1A capabilities to include targets like helicopters, UAVs, and fast boats. Raytheon Systems Company in Tucson, AZ will be the contractor, but implementation will not require any contractor or US government support personnel.

Britain request

April 11/11: Raytheon announces that it has delivered the 1st 20mm Phalanx Block 1B Close-In Weapon System to the Republic of Korea Navy. The direct commercial sale calls for the Phalanx Block 1B system to be installed on the lead FFX light frigate in 2011.

Other South Korean ships use Thales 30mm Goalkeeper system, but Phalanx’s bolt-on nature makes it a friendlier choice for smaller vessels. Raytheon expects to sign another contract with South Korea for an additional 5 Phalanx systems in the near future, representing the other 5 FFX ships.

South Korea: initial order & delivery

FY 2010

Support and tests. Phalanx, reloaded
(click to view full)

Sept 29/10: Support. A $35.2 million contract modification for engineering and technical services in support of the MK 15 Phalanx close-in-weapon system. Work will be performed in Tucson, Z, and is expected to be complete by December 2011. $8,379,133 will expire at the end of the current fiscal year, on Sept 30/10 (N00024-07-C-5437).

May 19/10: Support. A $22.9 million modification to a previously awarded contract (N00024-07-C-5437) for engineering and technical services in support of the MK 15 Phalanx CIWS. Work will be performed in Tucson, AZ, and is expected to be complete by September 2010. Contract funds in the amount of $5.3 million will expire at the end of the current fiscal year.

March 31/10: FY 2010. A $204 million not-to-exceed contract for MK 15 Phalanx Close-in Weapon System (CIWS) upgrades and conversions, system overhauls, and associated hardware.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburgh, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1% ); and New Albany, IN (1%). Work is expected to be complete by September 2014, and $51.3 million will expire at the end of the current fiscal year. This contract was not competitively procured (N00024-10-C-5427).

FY 2010

March 24/10: Support. A $5.8 million modification to a previously awarded contract (N00024-07-C-5437), exercising options for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ, and is expected to be complete by September 2010.

March 9/10: Testing. USS Abraham Lincoln [CVN-72] successfully completes a PACFIRE test firing of her 20mm Phalanx Close In Weapons System (CIWS), while exercising the boat’s combat systems. Upgrades to the close-in self-defense weapon system included transition from block 1 baseline 0, to block 1 baseline 2.

The main improvement uses compressed high pressure air instead of hydraulics to release the rounds faster, allowing the gun to fire 4,500 rounds per minute instead of 3,000. US Navy.

FY 2009

Israel; Canada. Boat beat-down
(click for video)

Sept 23/09: Support. A $13.7 million modification to previously awarded contract (N00024-07-C-5437), exercising options for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ and is expected to be complete by September 2010. Contract funds in the amount of $1.3 million will expire at the end of the current fiscal year.

June 19/09: The Government of Canada awards Raytheon Canada Limited of Calgary, AB an 8-year, C$ 180 million contract to overhaul, repair and upgrade the Canadian Navy’s Phalanx Close-In Weapon Systems (CIWS). The Phalanx serves on Canada’s Halifax class frigates, its aged Iroquois/Tribal class “air defense” destroyers, and its Protecteur class supply ships. The upgrades will likely take the systems to Phalanx Block 1B status, which improves capabilities against fast boats, helicopters, and UAVs.

Canada’s Industrial and Regional Benefit (IRB) Policy applies to this procurement. It requires that Raytheon Canada Limited undertake “high quality and advanced-technology business activities in Canada valued at 100 per cent of the contract value.”

Canada support & upgrades

May 15/09: FY 2009. A $259.9 million contract modification for MK 15 Phalanx Close-In-Weapon System (CIWS) Block 1B upgrades and conversions, system overhauls, and associated hardware. This includes the MK 15 MOD29 Centurion land-based system. $8.8 million will expire at the end of the current fiscal year, on Sept 30/09.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburg, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%), and is expected to be completed by September 2012 (N00024-07-C-5444).

FY 2009

May 13/09: Training. A $5.8 million contract modification for phalanx simulated infrared/visible engagement target simulator kits with shorting plugs in support of the Phalanx CIWS Program. The shorting plugs are useful, in order to make sure the simulated targets can’t lead to live firing.

Raytheon will work on the contract in England (80%); Louisville, KY (15%); and Tuscon, AZ (5%); and expects to complete work by January 2011. Contract funds will not expire at the end of the current fiscal year. The Naval Sea Systems Command manages the previously awarded contract (N00024-07-C-5444).

April 21/09: Israel. Despite news reports that Israel would order the land-based Mobile Centurion system, the Jerusalem Post quotes “senior defense officials” who say that a decision won’t be made until Israel can watch live tests in summer 2009. The report adds that Israel is interested in the system’s potential along the Gaza Strip border, but there are still several obstacles that must be overcome first.

One is its effectiveness against Kassam rockets and mortars, which will be answered by the live tests. The second obstacle is cost, given that each system covers 1.2 square km and costs about $25 million. That works well for protecting a base, but protecting a city like Sderot become far more costly. In a democracy, issues like noise levels are an obstacle that must be evaluated under environmental regulations, though that’s likely to be a minor hindrance at best. The final obstacles would involve American approval of the sale, which is very likely, and the willingness of American military customers to give up their own production slots, which is less certain. If they do not expedite delivery with production slot swaps, the required wait time might affect the rationale for choosing the Phalanx-based system over other options.

Jan 30/09: Laser Phalanx. White Sands Missile Range in New Mexico state continues to test a solid-state laser version of the Phalanx weapons system. The laser has proven capable of “rapidly” penetrating armor plating even when not at full power, and the next step is to test the system on mortar rounds.

The exact time required for burn-through or detonation of incoming rounds is a very important number. US Army release.

Oct 8/08: Mobile Centurion. Raytheon and Oshkosh unveil the “Mobile Centurion,” which mounts the Phalanx system on a hybrid-electric HEMTT A3 heavy truck. To make room, the truck’s normal load-handling system was removed, in favor of a fixed platform for the Phalanx. The ProPulse drive A3 model was picked because it has 120 kW of power to divide between the truck’s drive train and the Pahlanx as needed, which removes the need to tow a bulky generator.

The other benefit is air mobility. Instead of fitting just 1 current model Centurion/C-RAM trailer into a C-17 strategic transport plane, 3-4 Mobile Centurions could be fitted instead. Defense News.

FY 2008

Australia, New Zealand. Over Baghdad
click for video

Sept 22/08: Support. A $31.3 million modification to previously awarded contract N00024-07-C-5437, exercising an option for engineering and technical services in support of the MK 15 Phalanx CIWS.

Phalanx CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies. This modification combines support for the US Navy, US Army and the Governments of Egypt, Portugal and Australia under the Foreign Military Sales Program. Work will be performed in Tucson, AZ, and is expected to be complete by September 2009. Contract funds in the amount of $1.7 million will expire at the end of the current fiscal year.

Sept 18/08: FY 2008. A not-to-exceed $220.5 million modification to a previous contract for MK 15 Phalanx Close-In-Weapon System Block 1B upgrades and conversions, system overhauls, and associated hardware. Contract funds in the amount of $19.9 million will expire at the end of the current fiscal year.

Most Phalanx Block 1B conversions involve naval ships, due to the upgrade’s defensive value against small boats. The land-based C-RAM system is also based on Block 1B, however, and they will require system overhauls and spares of their own as part of their regular maintenance.

Work will be performed in Louisville, KY (30%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (7%); Long Beach, CA (6%); Radford, VA (6%); Burlington, VT (6%); Palm Bay, FL (2%); Pittsburg, PA (2%); Bloomington, MN (2%), Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%), and is expected to be complete by September 2012 (N00024-07-C-5444).

FY 2008

May 23/08: Support. A $14.3 million modification to previously awarded contract (N00024-07-C-5437) provides more incremental funding for engineering and technical services, bringing the contract’s current exercised value to $57.6 million. This modification combines purchases for the U.S. Army (45%); U.S. Navy (42%) and the Government of Pakistan, (13%) under the Foreign Military Sales Program. Work will be performed in Tucson, AZ and is expected to be completed by September 2008. The Naval Sea Systems Command in Washington Navy Yard, DC issued the contract.

May 16/08: New Zealand’s TV3 reports that the country’s 2 ANZAC Class frigates will upgrade their Phalanx guns to Block 1B status, as the first step in a larger overhaul and upgrade. See “NZ Looks to Upgrade ANZAC Frigates.”

NZ upgrade

May 12/08: Centurion. A not-to-exceed $61.2 million modification to previously awarded contract (N00024-07-C-5444) for MK 15 Phalanx Close-In-Weapon System (CIWS) ordnance alteration kits, spares, and associated hardware for Land-Based configurations to support the Global War on Terrorism.

Work will be performed in Louisville, KY (22%); Andover, MA (19%); Tucson, AZ (16%); Syracuse, NY (9%); Long Beach, CA (9%); Radford, VA (7%); Burlington, VT (7%); Palm Bay, FL (3%); Pittsburg, PA (2%); Bloomington, MN (2%); Salt Lake City, UT (2%); Norcross, GA (1%); and New Albany, IN (1%); and is expected to be complete by September 2010. Contract funds in the amount of $1.5 million will expire at the end of the current fiscal year.

Jan 22/08: Support. An $18.7 million modification to previously awarded contract (N00024-07-C-5437) for engineering and technical services in support of the MK 15 Phalanx Close-In-Weapon System. Work will be performed in Tucson, AZ and is expected to be complete by September 2008. Contract funds in the amount of $3.6 million will expire at the end of the current fiscal year.

“PHALANX CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies.”

Nov 9/07: FY 2007. Raytheon Co. in Tucson, AZ received a $225.1 million firm-fixed-price contract for MK 15 Phalanx Close-In Weapon Systems (CIWS) Block 1B Upgrade and Conversion equipment, plus U.S. Army Block 1B Land-based Phalanx Weapon System (LPWS) Upgrade and Conversion equipment, and U.S Army Block 1B LPWS’s and associated spares and support equipment. This effort also includes purchases for the Governments of Portugal (1.23%) and Australia (1.09%) under the Foreign Military Sales Program.

A subsequent Raytheon release adds more details: they will overhaul and upgrade 34 Phalanx CIWS systems for the U.S. Navy and 1 system for the Royal Australian Navy, and will build 12 Land-Based Phalanx Weapon Systems for the U.S. Army, while providing associated hardware to all customers under the agreements.

Work will be performed in Louisville, KY (55.7%), Burlington, VT (12.4%), Palm Bay, FL (8%), Andover, MA (4.9%), Pittsburg, PA (4.8%), Carson, CA (4.1%), Tucson, AZ (3.4%), Brooklyn, NY (3.4%), Bloomington, MN (3.3%), and is expected to be complete by November 2010. Contract funds in the amount of $7.3 million will expire at the end of the current fiscal year. The contract was not competitively procured by the Naval Sea Systems Command in Washington Navy Yard, Washington DC (N00024-07-C-5444).

FY 2007: USA, Australia

Oct 1/07: Overhauls. A $16.7 million firm-fixed-price modification under previously awarded contract (N00024-04-C-5460) for 7 Phalanx Close-In Weapon System (CIWS) Class A Overhauls. PHALANX CIWS is currently installed on approximately 187 USN ships and is in use in 20 foreign navies. Work will be performed in Louisville, KY and is expected to be complete in February 2011. All contract funds will expire at the end of the fiscal year.

FY 2007

FLIR; Lasers? UK Phalanx at night
(click to view full)

Sept 27/07: Centurion. Jane’s International Defence Review reports that Raytheon is planning to approach NATO with a strategy to lease or sell a number of its Centurion land-based Phalanx systems for deployment at fixed bases in Iraq and Afghanistan.

Sept 25/07: Ammo. Alliant Techsystems Inc. (ATK) in Mesa, Ariz., USA, won an estimated $44.6 million firm-fixed-price contract for MK 244 Mod 0, linked armor-piercing discarding sabot (APDS) 20mm cartridges, electric-primed 20mm rounds designed to be fired by the M61A1 20mm gatling cannon mounted in the shipboard Phalanx CIWS. This cartridge is referred to as the Enhanced Lethality Cartridge, as it contains a heavier projectile and inflicts more damage to the target than the precursor to this round, the MK149 Mod 4.

Work will be performed in Independence, MO, and is expected to be complete by September 2010. Contract funds in the amount of $512,519 will expire at the end of the current fiscal year. This contract was competitively procured and advertised via the Internet, with 2 offers received [General Dynamics ATP was almost certainly the other bidder]. The US Naval Surface Warfare Center, Crane Division in Crane, Ind. issued the contract. (N00164-07-D-4285)

Sept 11/07: Laser Phalanx. Jane’s reports from the British DSEi exhibition that Raytheon is working on a Phalanx variant that can fire lasers. What advantages would a laser system offer? Would it really be an advance over the current Phalanx system? DID explains.

Aug 23/07: Sub-contractors. DRS Technologies, Inc. announced a $26 million contract, with an option for an additional $23 million contract, to produce, integrate, test and deliver Phalanx Thermal Imagers for the MK 15 Phalanx Close-In Weapon System (CIWS). The contract was awarded to DRS by the Missile Systems business of Raytheon in Louisville, KY. The imagers were developed by the company’s DRS Sensors & Targeting Systems unit – California Division in Cypress, CA, and DRS-produced work for this contract will be accomplished by the unit’s Optronics Division in Palm Bay, FL. DRS will start delivering the imagers immediately, with completion expected by July 2008.

DRS’s Phalanx Thermal Imagers incorporate 2nd-generation FLIR (Forward Looking Infra-Red) technology, similar to that used by the company in the Horizontal Technology Integration series of sighting system products being delivered to the U.S. Army and Marines for ground combat systems like the M2/M3 Bradley IFV and M1 Abrams tanks, LRAS3, et. al. The new systems will replace 1st generation FLIR technologies currently in use on MK 15 Phalanx mounts.

May 25/07: UK C-RAM. Jane’s Defence Weekly reports that Britain will deploy a C-RAM system to protect UK forces in southern Iraq. Speaking at the Royal United Services Institute’s (RUSI’s) Air Power conference in London on May 17/07, Air Chief Marshal Sir Clive Loader, Commander-in-Chief of the RAF’s Air Command, disclosed that the Raytheon Land-based Phalanx Weapon System (LPWS) was being acquired “to protect the UK’s deployed bases in operational theaters.”

May 2/07: EDO Corporation announces a $15 million follow-on award for expanded support of the Army’s C-RAM (Counter Rocket, Artillery, and Mortar) system, which includes a land-based Phalanx weapon coupled with self-destructing explosive bullets. The task order was effective April 1, 2007 and includes in-theater support.

EDO services have included testing and validation of the systems at test facilities and in the field, assistance in fielding systems, and logistics services to ensure their continued operation. These services are being provided in the U.S. and in support of nearly 20 locations in combat zones. EDO release

Feb 28/07: Call UPS! Raytheon announces a 5-year, $169.9 million Performance Based Logistics contract to manage the spare parts for the U.S. Navy’s Phalanx CIWS. More than 1,100 part numbers amounting to more than 30,000 individual Phalanx parts are warehoused in Louisville, KY, where, for a firm-fixed-price, Raytheon, in partnership with United Parcel Service Supply Chain Solutions, guarantees delivery of spares to drop points within an agreed-to time frame.

The distribution and management functions allow for worldwide delivery using the best commercial carrier available, while maintaining process control through in-transit tracking. This process also allows for retail and wholesale spares modeling, spares procurement and, perhaps most importantly, inventory management. The provisions and benefits of the contract apply to both the U.S. Navy and the 24 international navies that have Phalanx in their inventories. Frank Wyatt, vice president for Raytheon’s Naval Weapon Systems in Tucson, AZ:

“The partnership with United Parcel Service, developed through the previous Phalanx logistics contract, has greatly improved inventory accuracy. Currently, Phalanx inventory accuracy stands at 99.9 percent resulting in a substantial increase in supply availability and a reduced wait time… Future cost savings and improved responsiveness can be anticipated by reducing parts demands through engineering redesign of selected high-demand, high-cost parts.”

Feb 8/07: Shingo. Raytheon Missile Systems’ Louisville, KY facility has captured a prestigious Shingo Prize for Excellence in Manufacturing, marking the 4th consecutive year that Raytheon facilities have won. The Louisville facility manufactures the Phalanx CIWS and RAM/SeaRAM systems.

Jan 3/07: Northrop Grumman Mission Systems in Huntsville, AL received a delivery order amount of $29.9 million as part of a $144.5 million firm-fixed-price and cost-plus-fixed-fee contract for the Forward Area Air Defense Command and Control/ Counter-Rocket Artillery Mortar Systems (FAAD C2/ C-RAM) Integration contract. Work will be performed in Huntsville, AL and is expected to be complete by Sept. 28, 2009. This was a sole source contract initiated on Nov. 20, 2006 by the U.S. Army Aviation and Missile Command in Redstone Arsenal, AL (W31P4Q-06-D-0029).

Northrop Grumman’s Jan 17/07 release describes it as “a contract valued at up to $71 million to continue their support in system engineering, integration, and installation for…C-RAM… In addition to continuing to support systems engineering, integration and installation of C-RAM capabilities, the indefinite delivery/indefinite quantity (IDIQ) C-RAM installation and support contract includes logistics and training support.”

FY 2006

Pakistan; Australia; UK. Calibration on CVN 73
(click to view full)

Sept 29/06: Northrop Grumman Mission Systems in Huntsville, AL received a delivery order amount of $28.6 million as part of a $670 million firm-fixed-price and cost-plus-fixed-fee contract for Forward Air Defense Command and Control/ Counter-Rocket Artillery and Mortar Systems (C-RAM) Integration. Work will be performed in Huntsville, AL and is expected to be complete by Sept. 28/08. This was a sole source contract initiated on May 4, 2006 by The U.S. Army Aviation and Missile Command in Redstone Arsenal, AL (W31P4Q-06-D-0029).

Under a $38 million contract awarded in October 2005, Northrop Grumman was tasked with integration, deployment, and installation of the C-RAM command and control systems architecture; assisted in integrating the command and control with target acquisition and tracking radars, warning, and response subsystems; and trained soldiers to operate and support the “system of systems.”

Sept 13/06: FY 2006. A $369.1 million firm-fixed-price modification under previously awarded contract N00024-04-C-5460 for Phalanx CIWS and associated spares for FY 2006 US Navy (51%) and US Army (35%) purchases, and the Governments of Pakistan (12.8%) and Australia (1.2%) under the foreign military sales requirements.

Work will be performed in Louisville, KY and is expected to be complete December 2009. Contract funds in the amount of $7.3 million will expire at the end of the current fiscal year.

FY 2006: USA, Pakistan, Australia

Aug 9/06: Centurion. A $6.9 million firm-fixed-price modification under previously awarded contract (N00024-04-C-5460) for land-based Phalanx weapon system ancillary equipment. This is the land-based configuration for the US Army’s counter-rocket, artillery, mortar program. Work will be performed in Louisville, KY and is expected to be complete by April 2007.

Feb 7/06: Support. Raytheon Missile Systems in Tucson, AZ received a $169.9 million firm-fixed-price requirements contract for performance-based logistics in support of the Phalanx CIWS.

This contract combines procurements between the US Navy (74.79%); US Coast Guard (4.6%); and the Governments of Australia (5%); Israel (5%); New Zealand (5%); Japan (1%); United Kingdom (1%); Canada (1%); Taiwan (1%); Poland (1%); Bahrain (0.4%); and Saudi Arabia (0.21%) under the Foreign Military Sales Program. Work will be performed in Louisville, KY (90%), and Tucson, AZ (10%), and is expected to be complete by April 2011. This contract was not competitively procured by the Naval Inventory Control Point in Mechanicsburg, PA (N00104-06-D-L007).

January 2006: UK. The British Defence Logistics Organization’s (DLO) Maritime Gunnery and Missile Systems (MGMS) Integrated Project Team signs a 10-year support, maintenance and availability contract with DML, with incentives to increase the number of days the guns are available and fit for use.

On Oct 31/06, the DLO noted that the target time each Phalanx spends having operational defects fixed was 1.56 days per operational mount, but DML was already achieving 1.24 days. As of October 2006, there were 36 Phalanx guns in service on Royal Navy Ships and Royal Fleet Auxiliaries; an upgrade of these units to Mk 15 Phalanx 1B status is slated to begin entering service by May 2008.

British long-term support

Oct 24/05: Northrop Grumman announces that the U.S. Army has selected them the prime contractor for the Counter-Rocket, Artillery, Mortar (C-RAM) Integration and Fielding contract. Northrop Grumman’s Mission Systems sector is developing a systems architecture and integrating the C-RAM target acquisition, fire control, warning and engagement subsystems. Under a $38 million contract, Northrop Grumman will first deploy a mortar-attack warning capability and install that capability at 8 forward operating bases in Iraq. Northrop Grumman Mission Systems will also train soldiers to use the system and integrate an intercept subsystem as it is fielded. Northrop Grumman release | DID article.

FY 2005

Canada; Portugal. Phalanx CIWS

May 16/05: FY 2005. A $45 million not-to-exceed, firm-fixed-price modification to previously awarded contract (N00024-04-C-5460) for Block 1B Upgrade and Conversion performance enhancement equipment for United States and Portuguese Navy Phalanx Close-In Weapon Systems (CIWS). This contract combines purchases for the U.S. Navy (31%) and the government of Portugal (69%) under the Foreign Military Sales program: 3 upgrade and conversions for the U.S. Navy, and 3 Phalanx MK-15 CIWS and ancillary hardware are planned in support of Portugal requirements.

Work will be performed in Louisville, KY and is expected to be complete by December 2007.

FY 2005: Portugal, USA

March 24/05: A $5.3 million firm-fixed-price contract modification to previously awarded contract N00024-04-C-5460 for production of 99 sets of Reliability and Maintainability Spares in support of the MK 15 Phalanx Close In Weapon System (CIWS) program. Work will be performed in Tucson, AZ (10%) and Louisville, KY (90%), and is expected to be complete by July 2007.

March 3/05: A not to exceed $129 million firm fixed price modification to previously awarded contract N00024-04-C-5460 for the Phalanx Close In Weapon System (CIWS). The contract includes Block 1B upgrades, overhauls, parts and support equipment, and other ancillary equipment. This equipment will be installed aboard several Arleigh Burke Class Destroyers (DDGs 107, 108, 109, 110, 111 & 112) and backfit upon various classes of ships. Additionally, 2 mounts will be provided to the United States Army. Work will be performed in Louisville, KY (90%) and Tucson, AZ (10%), and is expected to be complete by May 2009.

Dec 8/04: Canada exercised a contract option, engaging engage Raytheon Canada to repair, overhaul and upgrade its 16 Phalanx Close in Weapon Systems (CIWS). The contract lasts to 2009 and will cost at least C$ 82.5 million (about $68 million).

The original multi-million dollar contract was signed between Raytheon Canada and Canada’s Department of Public Works and Services in 2003. Under that contract, Raytheon Canada was to provide total life-cycle support for Canada’s 21 Phalanx CIWS systems, including fleet repair work, field service support, overhauls, upgrades, overhaul support material and engineering services.

The new contract extends Raytheon’s service to the Royal Canadian Navy to 2009, and the new C$ 44.6 million modification means the contract is now valued at in excess of $82.5 million. Work, including upgrade to the Mk 15 Phalanx 1B configuration, will be performed in Calgary, Alberta, at Raytheon Canada’s Naval Systems Support (NSS) facility.

Canadian upgrades & support

Additional Readings

Competitors

Categories: Defence`s Feeds

Indian defence minister draws line at 36 Rafales

Jane's Defense News - Fri, 22/05/2015 - 03:00
Key Points India's defence minister has said Delhi will not buy more than the 36 Dassault Rafales to which it committed in April The announcement confirms the end of the MMRCA tender and the government's commitment to the Tejas LCA programme India will neither licence-build additional Dassault
Categories: Defence`s Feeds

Thales selected to provide Crowsnest mission fit

Jane's Defense News - Fri, 22/05/2015 - 03:00
Thales UK has won out against Lockheed Martin UK Integrated Systems in the race to supply the radar and mission system for the UK Royal Navy's (RN's) Crowsnest airborne surveillance and control (ASaC) capability. Announcing the downselection on 22 May, the Ministry of Defence (MoD) said Thales
Categories: Defence`s Feeds

USAF says F-35A IOC on schedule

Jane's Defense News - Fri, 22/05/2015 - 03:00
Key Points The USAF still plans to declare its F-35 fleet operationally deployable in August 2016 Sensor fusion and a faulty digital maintenance and logistics system are still the main challenges to that goal The US Air Force (USAF) is on track to declare its new Lockheed Martin F-35 Lightning II
Categories: Defence`s Feeds

A Higher-Tech Hog: USAF A-10C Upgraded, Refurbished, Unloved

Defense Industry Daily - Fri, 22/05/2015 - 02:06
A-10A over Germany
(click to view full)

The Precision Engagement modification is the largest single upgrade effort ever undertaken for the USA’s unique A-10 “Warthog” close air support aircraft fleet. While existing A/OA-10 aircraft continue to outperform technology-packed rivals on the battlefield, this set of upgrades is expected to make them more flexible, and help keep the aircraft current until the fleet’s planned phase-out in 2028. When complete, A-10C PE will give USAF A-10s precision strike capability sooner than planned, combining multiple upgrades into 1 time and money-saving program, rather than executing them as standalone projects. Indeed, the USAF accelerated the PE program by 9 months as a result of its experiences in Operation Iraqi Freedom.

This is DID’s FOCUS Article for the PE program, and for other modifications to the A-10 fleet. It covers the A-10’s battlefield performance and advantages, the elements of the PE program, other planned modifications, related refurbishment efforts to keep the fleet in the air, and the contracts that have been issued each step of the way.

A/OA-10 Thunderbolt II: Experiences on the Ground A/OA-10 at Bagram, AF
(click to view full)

The Major’s Email: British Harrier Support in Afghanistan, Revisited” examined the statements of a British officer who had criticized British close air support, and openly stated a preference for USAF A-10s over any aircraft the British could deploy in theater.

As we explained at the time, this comes as no surprise. The O/A-10 “Warthog” has the advantage of armored protection, along with a purpose-built design that allows slower speed forward flight and longer loiter time over the battlefield. Not to mention its infamous GAU-8 Avenger 30mm gatling gun that can take apart a tank – or just about anything else in its field of fire. This is what allowed it to do a substantially better job in Desert Storm than fast-moving fighters like the quickly-abandoned “A-16″ F-16 experiment, and it’s currently keeping them very busy in Afghanistan.

It kept them busy in Iraq, too. A July 2003 report in Air Force News quoted Lt. Col. Dave Kennedy:

“Kennedy said during a Pentagon interview that in the first week of the war, close-air support requests went to the Combined Air Operations Center “open-ended” — meaning no specific aircraft type was requested. After the first week, he said, 80 to 90 percent of the requests for close-air support were A-10-specific.”

As one can see, the British Major is hardly alone in his preferences. Why is this?

As this National Defense magazine article notes, fast jets simply aren’t an ideal choice for close air support, and the British aren’t alone in having this issue. US Army Sgt. First Class Frank Antenori discuss his recent experiences in Iraq:

“The aircraft that we have are awesome, but they are too awesome, they are too fast, too high speed. The older technology, the A-10, is far better than the new technology, Antenori said. “The A-10s never missed, and with the F/A-18s we had to do two or three bomb runs to get them on the target,” he said, recalling his recent experiences in combat.”

Dispatches from Afghanistan add an additional edge, and reinforce the point:

The A-10 combines some of the best of today’s high-technology Air Force with a solid, low-tech foundation. The addition of a targeting and laser-designation pod was a huge boost to the plane’s capabilities, but still no substitute for the pilot’s eyeballs.

“Most other aircraft rely heavily on (electronic) sensors to find and target the enemy,” said Capt. Rick Mitchell, deployed here from the Air Force Reserve Command’s 442nd Fighter Wing at Whiteman Air Force Base, Mo. “In the A-10, it’s not unusual for a pilot to use binoculars.”

“Killer Chick”
flew it home
(click to view full)

Which is not to say that technology is useless. A/OA-10s have made effective and frequent use of LITENING AT surveillance and targeting pods, for instance. Integrating them directly into the aircraft’s systems is a fine idea that lowers pilot workload, and adds scanning range and improved night/bad weather capabilities. While a second crewman would be ideal, and was part of a 1980s “A-10 Night/Adverse Weather” model that was never produced, the sensor pods are clear improvements. Likewise, adding the ability to drop additional precision weapons like JDAM or its WCMD cluster bomb counterpart can only be a plus. On the flip side, A-10s have also been involved in several notable friendly fire incidents, which makes datalink improvements a critical fix.

The difference is that conventional fast jet fighters are forced to depend on these enhancements for effectiveness, because of their aerodynamic design a vulnerability to damage. With the new Precision Engagement additions, the A-10C adds many of the newer fighters’ tricks and weapons, but its cheaper, purpose-built design and stronger protection give its pilots additional options. Those additional options contribute directly to effectiveness in combat, and can still be used if hostile fire or simple technical failure render those technological enhancements useless.

The net result is an A/OA-10A Thunderbolt II/ “Warthog” platform that is a worthy successor to its P-47 Thunderbolt/”Jug” namesake, whose top 10 aces all survived World War II.

The “Hog” is the best western close air support aircraft by a very wide margin, and the A-10C upgrades make it the best close-support aircraft in the world. It’s likely to remain so well into the future, despite competition from the upgraded Sukhoi SU-25/28 “Frogfoot”/”Scorpion”, or boasts from the F-35 Joint Strike Fighter program that their aircraft will be able to replace it.

The A/OA-10 Precision Engagement Modification Program A-10 cockpit, before
(click to view alternate)

To date, A-10 fleet upgrades have been somewhat patchwork and piecemeal. The A-10C PE program changes all that. The entire A-10 fleet will be modified over 4-5 years, and an April 2/07 GAO report estimates the A-10 Precision Engagement program’s total overall cost at around $420 million.

Lockheed Martin Systems Integration – Owego is the A-10C Precision Engagement program’s prime contractor and systems integrator under the direction of the A-10 program office (508th Attack Sustainment Squadron), leading a team that includes Northrop Grumman of St. Augustine, FL; BAE Systems of Johnson City, NY; and Southwest Research Institute (SWRI) of San Antonio, TX. The Air Force awarded the Precision Engagement development contract to Lockheed Martin in 2001, and as the prime contractor Lockheed is expected to deliver a total of 356 kits over 5 years, at an estimated cost of $168 million. Lockheed Martin received the production contract in February 2005, with the first production kits delivered to Hill AFB in March 2006.

While the program was originally supposed to consist of several spirals, these plans were modified in light of USAF requests and needs. The program now consists of 2 increments, with JTRS fielding left as an open item to be addressed once the JTRS AMF equipment is available.

A-10 PE, Increment 3.2 A-10C, partly upgraded
(click to view full)

The Maryland ANG(Air National Guard) 175th Wing at Warfield ANG Base in Baltimore, MD was be the first unit to convert to the modified aircraft and integrate them into normal operations, beginning in September 2007. They received Increment 3.2, which will include the PE kit described below plus datalink capability (14 months early), basic JDAM and WCMD compatibility (9 months early), the Spiral 1 PE kit described below, and targeting pod compatibility.

Each Spiral 1 Precision Engagement kit consists of a new cockpit instrument panel. A new computer called the Central Interface Control Unit (CICU) adds new cockpit controls and displays, including a pair of 5×5 inch multi-function color displays that include moving digital map functions. The new integrated Digital Stores Management System (DSMS), meanwhile, keeps track of weapons and launches them; it will be linked into applications as diverse as video from the targeting pod, weapons status reports, and the data link. These upgrades require a major change to the aircraft’s wiring, and consume a lot more power. Not to worry, though; a second DC generator will double the A-10’s generator capacity.

For the pilot, a new stick grip and right throttle provide true hands-on-throttle and-stick (HOTAS) fingertip control of aircraft systems and targeting pod functionality. Using the HOTAS, the pilot can designate the targeting pod to monitor an area of interest, confirm target identification, and provide laser guidance to weapons from his A-10 or from another platform – all without taking his hands from the controls. Upgrading 6 of the A-10C’s 11 pylons to ‘smart’ weapons capability via MIL-STD-1760 is the final piece of the basic infrastructure upgrades.

A-10s w. LITENING
(click to view full)

Key add-ons build upon these initial steps, and targeting pod integration is touted as the final piece of spiral 1. PE Program modifications will allow the A-10 to carry either the Northrop-Grumman/ Rafael LITENING AT or the Lockheed Martin Sniper XR targeting pod on an underwing pylon as fully integrated devices, with connections to all of the aircraft’s other systems. The pods, which include long-range TV and infrared cameras with zoom capabilities and a laser target designator, will enable the pilot to identify targets from medium altitudes on the order of 20,000 to 30,000 feet day or night, then illuminate them for homing, laser-guided or GPS guided bombs. During the initial deployments in Iraq, their heat-sensing capability has even proved useful for finding buried land mines, which tend to retain a differential heat signature because they’re made of different materials than the earth around them.

The targeting pods will help reduce mistaken attacks on friendly forces and noncombatants by giving the pilot a closer look at potential targets, and experience with other jets indicates that their stabilized, “point and stare” capabilities are likely to prove especially important in urban operations. Eventually, they will allow A-10 aircraft to engage targets from a higher altitude using advanced sensors and targeting pods and precision guided weapons, including the JDAM and their companion WCMD kits for cluster bombs.

Integration with ROVER devices carried by ground troops also becomes possible, allowing front line forces to communicate using annotated map displays and specific positional data.

SADL screen
(click to view full)

Another very significant Increment 3.2 upgrade involves Raytheon’s SADL data link. SADL was added after the A-10 Precision Engagement program requirements were finalized, which is usually a predictor of trouble. Instead, it went from requirements to delivery in just 17 months, thanks to a general sense of urgency and extraordinary contractor efforts. Those efforts included hardware purchases by Lockheed Martin before they had a government contract to do so, putting their funds at risk but ultimately shortening project completion by 6 months. Back in February 207, Major Drew English, the USAF program manager for A-10C Precision Engagement, told Military Aerospace Technology that:

“I would say the biggest [change] we have coming impact wise is the data link. It will shape our tactics and it bring us into a new era, probably as much as night vision goggles did when we got those in the mid-’90s”

SADL automatically sends and receive data from the Army Enhanced Position Locating and Reporting System (ePLRS) that is part of FBCB2, a.k.a. “Blue Force Tracker.” This means that friendly troops on the ground receive the plane’s position and altitude, while the 5 closest “friendlies” will show up on the aircraft’s heads-up display and/or multi-function cockpit displays at the beginning of an attack. SADL also offers Link 16 integration with other fighters and air defense systems, allowing the A-10C to automatically known receive position data for enemy aircraft, air defenses, and other targets – including targets beyond its range of sight. Link 16 and SADL share information via gateways, which are land-based or airborne portals that permit the transfer of information between different formats.

A-10C pilot Capt. Rich Hunt of the Maryland Air National Guard’s 175th Wing said from Al-Asad AFB, Iraq:

“Previously, for me to keep track of all the other airplanes that are around me or to help us perform the mission, I would literally have to write those down with a grease pencil inside my canopy or write them down on a white piece of paper on my knee board in order to keep track of all that… Now I have a color display that has all of the other airplanes that are up supporting the same mission across all of Iraq right now. And they are all digitally displayed through that data link on my map. So now, especially at night when awareness is a little bit lower, I can look at that beautiful map display and know exactly what other airplanes are around me.”

He also praised the ROVER downlink capability, allowing the aircraft to transmit the live video feed to a joint terminal attack controller on the ground, and the new JDAM capabilities:

“In Iraq that is especially important because it’s a very difficult situation when we provide close-air support in such a densely urban environment. By the controller being able to look through my targeting pod real time, we can compare exactly what we are looking at and make sure we have an absolutely 100 percent positive identification of the target… Sometimes we find ourselves where we have to destroy a terrorist stronghold location. But in the house across the street are friendly Iraqi civilians. We know we have to destroy the stronghold, but we don’t want to cause any collateral damage whatsoever. So the JDAM has been outstanding for us. Between the situational awareness data link, the targeting pod with the ROVER down link to the controller on the ground and the JDAM, the A-10C on this deployment has been an amazing success for us.”

The USAF adds that:

“A command and control platform — such as the 12th Air Force Air Operations Center here — can send digital communication via SADL to the A-10C for a variety of purposes. Tasking messages, targeting information, threat warnings, and friendly locations can all be sent and received by the A-10C. Additionally, the A-10C is the only platform with the ability to task other fighter platforms to attack targets.”

Given past A-10-related friendly fire incidents, the appeal of a system like SADL is obvious.

Together, these Increment 3.1 and 3.2 additions create an A-10C aircraft that looks the same on the outside, but offers a very different set of capabilities and can be used in very different ways.

The Air Force has been conducting flight-testing of the A-10C at Eglin Air Force Base, FL, and at Nellis Air Force Base, NV, since early 2005. Operational Testing Certification (OT Cert) begins in July 2007, with Air Force operational test and evaluation center Operational User Evaluation (AFOTEC OUE) in August 2007 that includes a final look at JDAM integration and the SADL datalink. If everything continues to go well, operational fielding begins in early September 2007 and The AFOTEC report will follow in October 2007.

A-10 PE, Increment 3.3 A-10C fires cannon
(click to view full)

A second fielded Precision Engagement release will provide for CNS/ATM, full smart weapon integration, more software upgrades, additional improvements as a result of feedback from earlier flight tests, and some maintainer functional improvements.

Releases to test were scheduled for August 2007 and December 2007, with fielding expected around May 2008.

Overall PE kit production ran to 2008. Squadrons released their jets for modification at Hill AFB, UT for upgrades, and they returned about 90 days later as A-10Cs. Installation work was scheduled to run until 2009.

A-10 Fleet: Other Planned Improvements In service to 2028

The A-10C PE program is only part of the effort required to keep the Reagan-era fleet of A-10s battle-worthy out to 2028. A separate $2.02 billion dollar wing replacement program is underway, a multiple-award $1.72 billion contract covered overall fleet maintenance and some upgrades from 2009-2019, and more technology inserts and structural modifications were planned. The GAO’s April 2007 report placed the potential total cost of upgrades, refurbishment, and service life extension plans for the A/OA-10 force at up to $4.4 billion.

The Pentagon began pushing to retire the entire fleet early in the FY 2015 budget. If that effort fails, possible upgrades could include electronics and engines, as well as structural work.

The USAF planned to replace the “thin skin” wings on 242 aircraft with new wings, and that effort is now underway. The cost was originally estimated at $1.3 billion, but the June 2007 contract was for $2 billion. This effort will help to extend A-10 service lives to 16,000 flying hours.

At some point, the A-10s would need to install Joint Tactical Radio System-based (JTRS) radios. As of April 2007, JTRS AMF was only in the bid phase, and as of 2014 it was not a required USAF standard.

To improve the A-10’s overall power and maintainability, the USAF hoped to eventually upgrade the existing General Electric TF34-GE-100 turbofan engines. Components of the existing engine will be replaced; in particular, a more efficient fan section with wider blades would be installed by General Electric along with digital engine controls. Flight testing of the revamped engine was slated to begin in FY 2008, and production in 2009-2010. Instead, this effort was downgraded in priority and deferred.

An April 2/07 GAO report places the potential total cost of upgrades, refurbishment, and service life extension plans for the A/OA-10 force at up to $4.4 billion.

Contracts & Key Events

Unless otherwise specified, all contracts are awarded to Lockheed Martin in Owego, NY as leader of the A-10 Prime Team; and they are issued by the Headquarters Ogden Air Logistics Center at Hill Air Force Base, UT.

FY 2015

Election results make retirement tougher. A-10 firing run

May 22/15: Boeing wants to sell refurbished A-10s to international customers. The US is the only operator of the Warthog, with the House recently voting to fund the fleet for another year, despite the Air Force chiefs’ efforts to cut down numbers. Boeing is currently engaged in an extensive re-winging program for the aircraft, following a $2 billion 2007 contract.

May 1/15: On Thursdaythe House Armed Services Committee voted to keep the A-10 operational for another year, with the 2016 defense policy bill including an amendment to prohibit the Air Force from retiring the plane. The amendment – proposed by Rep. McSally – passed while a “middle ground” amendment proposed by Rep. Moulton failed. That amendment would have allowed the Air Force to retain a hundred of the aircraft while retiring up to 164.

April 28/15: The House is seeking to block the A-10 from being retired, with Rep. Martha McSally reportedly planning to introduce an amendment to prevent the Air Force from pushing the aircraft aside. This amendment will be attached to Thornberry’s version of the defense budget, with the A-10 fleet fully-funded. An A-10 recently had to conduct an emergency landing while deployed to Iraq, with the aircraft’s engine reportedly suffering “catastrophic damage.”

Nov 11/14: Politics. The USAF has a new angle in the A-10 fight, proposing to retire 72 A-10s in order to switch their maintenance workers over to the F-35. It’s being sold as part of having the F-35A reach Initial Operational Capability, but A-10 proponents like Sen. McCain and Kelly Ayotte say the USAF has other choices. The USAF says that their previous plan B has been blown apart by renewed needs in Iraq and Syria. Sources: Defense News, “USAF Discussing A-10 Compromise With Congress”.

Nov 4/14: Elections. American mid-term elections leave the Republican Party with a bigger House Majority, and recapture the Senate from the Democrats. That result leaves John McCain [R-AZ] as the new chair of the Senate Armed Services Committee. There are 80 A-10s at Davis-Monthan AFB, AZ in Tucson, and McCain is very much a proponent of engagement in places like Iraq, Syria, and other places where the A-10’s unique capabilities make a big difference. He’s going to be a staunch opponent of any retirement plans.

The election also features A-10 pilot Lt. Col. Martha McSally [AZ-2], who was the first woman to command an American fighter squadron, and has been described as one of the Republicans’ top House recruits. McSally is narrowly ahead in a traditionally-Democratic district, but the vote count and recount process is going to take a little while. If she is elected, it will have obvious implications for A-10 lobbying in Congress. Sources: AP, “Sen. John McCain vows to save A-10 from retirement” | McSally for Congress, “McSally Campaign Statement on Challenge to Uncertified Ballots” | Politico, “The House GOP’s top recruit”.

FY 2014

Attempted retirement of the fleet. A-10Cs
(click to view full)

Sept 19/14: Ki Ho Military Acquisition Consulting, Inc. in Layton, UT wins a $31.4 million firm-fixed-price, engineering support, indefinite-delivery/ indefinite-quantity contract to identify new and developing technologies that can “support the accomplishment of A-10 missions, and either eliminate or minimize operational and/or sustainability gaps.” $5.3 million is committed immediately, using FY 2014 USAF O&M funds.

Is this operational consulting, or payment to make more arguments for retiring the A-10? Poor results so far against in Iraq and Syria aren’t making fantastic arguments for other systems.

Work will be performed at Hill AFB, UT, and is expected to be complete by Sept 15/19. This award is the result of a competitive acquisition, with 3 offers received by the USAF Life Cycle Management Center at Hill AFB, UT (FA8202-14-D-0002).

Sept 9/14: Support. Korean Air Lines’ Aerospace Division in Seoul, South Korea receives an estimated $46 million firm-fixed-price maintenance and repair contract for depot level support to A-10 aircraft stationed in the Asia/Pacific region. Funds will be committed as needed.

Work will be performed at KAL’s facility in Seoul, South Korea, with an expected completion date of Sept. 30/20. This contract was a competitive acquisition, with 2 offers received by USAF Life Cycle Management Center at Hill AFB, UT (FA8202-14-D-0001).

Week of June 20/14: Politics. Things continue to move at a brisk pace in the House, with floor action starting for HR 4870 then leading to a vote within days. The White House issued its usual set of “strong” disagreements [PDF], with C-130 AMP, E-3s, and AH-64 transfers among the points of contention. At least the executive appreciated that someone in Congress sided with them to retire A-10s. But it was not meant to be, as an amendment against divesting A-10s easily passed with a 300-114 roll call. This was expected given the fact A-10 retirement was at odds with the already approved authorization bill.

The Administration will now have to find Senatorial opponents to the A-10, among other cuts the House doesn’t want, that are convinced enough to push the issue all the way through reconciliation. The odds are not in their favor.

On June 20 the bill was wrapped up with a 340-73 roll call, showing even broader bipartisan support than the authorization bill: amendments [PDF] | Bill report [PDF].

June 10/14: Politics. The House Appropriations Committee votes 13-23 against Rep. Jack Kingston’s [R-GA-1] amendment to transfer $339 million from the Pentagon’s operations and maintenance account to sustain the A-10 fleet. Former USAF pilot Chris Stewart [R-UT-2] was one of the speakers in favor from both parties, and he outlined the inherent issues with the close-air support mission, but it was to no avail.

What really matters is what the House ends up approving by final vote, but these kinds of losses can hurt politically. Sources: DoD Buzz, “House Panel Votes to Scrap the A-10 Warthog”.

May 23/14: Political. The Senate Armed Services Committee has completed the mark-up of the annual defense bill, which passed by a 25-1 vote. The section relevant to the A-10 is explained this way:

“Prohibits the Air Force from retiring or preparing to retire any A-10 or Airborne Warning and Control Aircraft (AWACS), or making any significant changes in manning levels in FY15.”

That isn’t as comprehensive or as long-term as Sen. Ayotte’s S.1764 bill (q.v. Nov 21-Dec 5/14), but it fulfills the same purpose in the immediate term. If the measure remains in the Senate’s FY 2015 NDAA bill, it will have to be reconciled with similar but different provisions in the House bill (q.v. May 8/14). Bottom line? Unless these measures are stripped from the final bill in either the House or the Senate, the A-10C fleet isn’t going anywhere just yet. Sources: US Senate Armed Services Committee, “Senate Committee on Armed Services Completes Markup of the National Defense Authorization Act for Fiscal Year 2015″.

May 8/14: Political. A 41-20 voice vote in the House Armed Services Committee changes the language of Rep. McKeon’s A-10 compromise, and institutes terms that are similar to HR.3657. Ron Barber [D-AZ-2] and Vicky Hartzler [R-MO-4] and Austin Scott [R-GA-8] from HR.3657 are the amendment’s sponsors, and they’ve added interesting requirements. One example would have the Comptroller General’s Office assess the cost per-plane for close air support missions, as part of the set of activities necessary before retiring the A-10s. The F-35’s high operating costs, and heavy depreciation due to its high initial cost, would cripple it in any comparison with the A-10. The F-35’s figures per mission would probably be at least 100% higher, and could easily be worse than that.

May 5/14: Political. House Armed Services Committee chair Buck McKeon [R-MO] proposes a compromise measure that would require “Type 1000 storage” for the retired A-10C fleet. Planes kept in that condition can be recalled to duty and fly again within 30-120 days, because after the initial removal and proper storage of key items like engines and weapons, no parts can be pulled without the express permission of the program office at Wright-Patterson AFB. That’s significantly better than Type 2000/4000 storage, but a step below Type 3000 “temporary storage” planes that receive engine runs, tow-outs to lubricate their bearings, and fluids servicing every 30 days.

Defense News estimates the cost for the 283-plane fleet at $25.7 million over 5 years ($12.17M initial storage + $283k/year + $12.17M refurb every 4 years). Sources: Air Force Magazine, “Living Boneyard” | Defense News Intercepts, “The Price of Storing the A-10 in “Type-1000″ Storage” | House Armed Services Committee, “McKeon Releases Full Committee Mark”.

Feb 24/14: Scrap the A-10Cs. The announcement isn’t a surprise (q.v. Sept 15/13), but Chuck Hagel’s FY 2015 pre-budget briefing explains the official justification for removing the A-10 fleet:

“For the Air Force, an emphasis on capability over capacity meant that we protected its key modernization programs, including the new bomber, the Joint Strike Fighter, and the new refueling tanker. We also recommended investing $1 billion in a promising next-generation jet engine technology, which we expect to produce sizeable cost-savings through reduced fuel consumption and lower maintenance needs. This new funding will also help ensure a robust industrial base – itself a national strategic asset.

To fund these investments, the Air Force will reduce the number of tactical air squadrons including the entire A-10 fleet. Retiring the A-10 fleet saves $3.5 billion over five years and accelerates the Air Force’s long-standing modernization plan [to replace it with the F-35]…. the A-10… cannot survive or operate effectively where there are more advanced aircraft or air defenses. And as we saw in Iraq and Afghanistan, the advent of precision munitions means that many more types of aircraft can now provide effective close air support, from B-1 bombers to remotely piloted aircraft. And these aircraft can execute more than one mission.

Moreover, the A-10’s age is also making it much more difficult and costly to maintain. Significant savings are only possible through eliminating the entire fleet, because of the fixed cost of maintaining the support apparatus associated with the aircraft. Keeping a smaller number of A-10s would only delay the inevitable while forcing worse trade-offs elsewhere.”

The A-10’s original concept did, in fact, aim to survive and operate in the face of advanced fighters and air defense, which makes Hagel’s statement questionable. Expect to see others question Hagel’s use of the term “effective” as well. The A-10 remains peerless in the close support role, and the use of fighter guns for close-in attacks on the front lines remains reality. That isn’t possible for drones, and it’s problematic for the vulnerable F-35A, which carries only 14% as much ammunition (only 180 rounds) in a lesser caliber. It would be possible to defend the decision by saying that the USAF is downgrading Close Air Support in order to build up other capabilities, but that isn’t how the Pentagon is selling this. Sources: US DoD, “Remarks By Secretary Of Defense Chuck Hagel FY 2015 Budget Preview Pentagon Press Briefing Room Monday, February 24, 2014″.

FY 2015 Budget: Retire the fleet

Nov 21-Dec 5/13: Politics. House and Senate members introduce bills in each chamber that would restrict the USAF’s ability to retire its A-10Cs. The Senate’s S.1764 is introduced by Kelly Ayotte [R-NH], While the House’s HR.3657 is introduced by Vicky Hartzler [R-MO-4]. Both have cosponsors from each party, but they’ll need more cosponsors to improve the chances of getting to a vote and being passed into law.

The core condition in both bills is that the USAF must have a fleet of F-35As with Block 4A software, including integration with the GBU-53 Small Diamater Bomb II or equivalent capability, all certified by an audit by the Comptroller General that also says that there are enough F-35s to replace the A-10s. In practice, that would defer A-10C retirement to 2025 at least, and might even push all the way to the A-10’s planned 2028 retirement.

FY 2013

APKWS laser-guided rockets added; A-10s out of Europe. BAE/GD APKWS
(click to view full)

Sept 26/13: TLPS. Northrop Grumman Technical Services in Herndon, VA receives an estimated maximum $11.3 million task order under a combined firm-fixed-price and cost-plus-fixed-fee engineering support contract. They’ll provide evaluations, analysis, repair designs, and/or testing to support the requirements for the A-10 aircraft structural integrity program and maintenance of operational safety, suitability, and effectiveness. All funds are committed immediately.

This award is a result of a competitive acquisition under the Thunderbolt Life Cycle Program Support contract, but only 1 bid was received.

Work will be performed at Hill AFB, UT, although various portions of the work will take place at subcontractor facilities, and work is expected to be completed by Sept 18/16. The USAF Life Cycle Management Center/WWAK at Hill AFB, UT manages the contract (FA8202-09-D-0003, 0012).

Sept 25/13: Political. Sen. Kelly Ayotte [R-NH], whose husband Joe was an A-10 pilot, puts a hold on the nomination of Deborah Lee James to be Secretary of the Air Force, until she gets clear and acceptable answers regarding the USAF’s proposal to kill the platform. Sources: Defense News, “Ayotte Blocks Air Force Secretary Nominee Over Possible A-10 Cuts”.

Sept 20/13: Political. House Armed Services Committee member Rep. Ron Barber [R-AZ-02] initiates a letter signed by 8 colleagues, calling the A-10:

“…a critical capability…. In Operation Desert Storm, the A-10 was responsible for the destruction of 4,000 military vehicles and artillery pieces. In Operation Enduring Freedom and Operation Iraqi Freedom, the A-10 has performed nearly one third of the combat sorties…. The Department of Defense must maintain its ability to wage ground combat and support those at the tip of the spear.”

The letter is co-signed by Reps. Rob Bishop [R-UT-01, HASC on leave to Rules]; Paul Gosar [R-AZ-04]; Vicky Hartzler [R-MO-04 HASC]; Jack Kingston [R-GA-01, Ways & Means]; Candice S. Miller [R-MI-10]; C.A. Dutch Ruppersberger [D-MD-02, Intel.]; Austin Scott [R-GA-08, HASC]; and Mike Simpson [R-ID-02, Budget/ Approp.]. Sources: Rep. Ron Barber Release | Full letter [PDF].

Sept 17/13: Political. Gen. Mike Hostage reiterates to reporters at the Air Force Association’s Air and Space Conference that the A-10 may be on the chopping block, and repeats the point about savings only becoming substantial when you remove entire fleets. He adds:

“You can’t get your money out of installations because they won’t support [base realignment and closure]. You can’t get money out of people fast enough. It takes about a year to get savings out of people.”

Gen. Welsh’s address
click for video

Sept 15/13: End of the A-10? USAF Chief of Staff Gen. Mark Welsh, Air Force chief of staff, is quoted as saying that “You can cut aircraft from a fleet, but you save a lot more money if you cut all the infrastructure that supports the fleet.”

That’s a step beyond initial reports about the Strategic Choices and Management Review, and current reports have the USAF considering the removal of all 343 A-10Cs, all 59 KC-10 tankers, and more of the 249 or so F-15C/Ds. The CRH successor to the HH-60 Pave Hawk helicopters is also up for review.

The KC-10 option seems to make zero sense as a “single-role” retirement, as it’s far more capable and multi-role than the smaller KC-135s, giving it especial value in the huge Pacific theater. It’s also the USAF’s key insurance against a grounding of its 1950s-era KC-135 aerial tanker fleet – which may explain the decision. If the USAF is trying to protect its KC-46 program, removing any operational insurance for the aged KC-135s makes the KC-46 program that much harder to mess with, or even to delay.

The F-15Cs, on the other hand, have had serious aging out problems, including maneuvering restrictions, and even a months-long grounding after one of the planes broke in 2 in mid-air. The F-22 Raptor fleet’s small size means that retiring the F-15Cs would be a big hit to US air superiority assets, but the multi-role F-15E Strike Eagles can perform the air superiority role almost as well. It’s just a continuing data point in the long-term downsizing of American TacAir. Sources: Defense News, “USAF Weighs Scrapping KC-10, A-10 Fleets” and “USAF General: A-10 Fleet Likely Done if Sequestration Continues”.

Sept 4/13: Wings. Boeing announces a $212 million follow-on order for 56 A-10C replacement wings, bringing total orders so far under the $2 billion program (q.v. June 29/07 entry) to 173 of a maximum 242.

Work will be performed at Boeing’s plant in Macon, GA. Sources: Boeing, Sept 4/13 release.

Aug 12-13/13: Cut the USAF? Prof. Robert Farley makes a condensed argument for abolishing the USAF as a separate service, in advance of his book “Grounded! The Case for Abolishing the United States Air Force.” Farley argues that the USA needs air power, but not a service that’s divorced from the ground and naval forces they support. A misguided focus on strategic effect, which he argues hasn’t panned out in wartime experience, will interfere and has interfered with effective contributions to a land/ sea/ air team.

Michael Auslin of the neoconservative AEI think tank responds, arguing that the USAF’s space role and global fast-reaction capabilities make it a unique asset that can reach areas far inland where the Navy cannot go, and go overseas in a way the Army is unable to. An independent Air Force, he says, will wring every advantage out of the air and space domains, just as the Navy does at sea.

Here’s the thing. What if the USAF is seen as a non-team player, one who consistently short-changes the needs of other services? It then becomes very hard to argue that the USAF is in fact wringing every advantage out of the aerial domain for the USA. At a time of significant budget cuts, cutting an entire service offers much bigger administrative savings than removing aircraft fleets, and removing fleets the other services see as their top priorities could create a level of friction that will place that kind of radical option on the table. Sources: War Is Boring, “America Does Not Need the Air Force” | Breaking Defense, “Why America Needs The Air Force: Rebuttal To Prof. Farley”.

Aug 6/13: Combat. An engagement in Afghanistan illustrates the A-10’s strengths, and underscores why high-altitude bombing simply isn’t going to replace what it does on the front lines:

“Even with all our (top-of-the-line) tools today, we still rely on visual references,” said the lead pilot, who is on his first deployment from Moody Air Force Base, Ga. “Once we received general location of the enemy’s position, I rolled in as lead aircraft and fired two rockets to mark the area with smoke. Then my wingman rolled in to shoot the enemy with his 30 millimeter rounds.”…. “We train for this, but shooting danger-close is uncomfortable, because now the friendlies are at risk,” the second A-10 pilot said. “We came in for a low-angle strafe, 75 feet above the enemy’s position and used the 30-mm gun — 50 meters parallel to ground forces — ensuring our fire was accurate so we didn’t hurt the friendlies.

The engagement lasted two hours that day, and in that time, the A-10s completed 15 gun passes, fired nearly all their 2,300, 30-mm rounds, and dropped three 500-pound bombs on the enemy force.”

As a reference point, the F-35s the USAF wants to use as replacements can’t fly as slowly for visual references, are highly vulnerable to battle damage, and carry just 180 25mm cannon rounds. Sources: USAF, “Bagram pilots save 60 Soldiers during convoy ambush”.

Front-line reality

Aug 5/13: Political. Defense News reports that the 4-month Strategic Choices Management Review will report that the USAF could eliminate most of its older C-130E/H transports, and 5 of 55 tactical A-10, F-15, or F-16 squadrons (up to 120 jets, based on 24-plane squadrons).

The USAF’s problem is that Congress wants to cut money, but won’t countenance closing bases. They’re also not receptive to aircraft retirements, which has left the USAF with several squadrons’ worth of unflyable planes that can’t be retired. FY 2013 budget proposals to retire 22 C-130Hs and shut down two A-10 squadrons were blocked by Congress. Sources: Air Force Times, “AF considers scrapping A-10s, KC-10s, F-15Cs, CSAR helos”

June 18/13: Basing. As part of budget cuts (q.v. Feb 1/12 entry), a ceremony at Spangdahlem Air Base, Germany inactivates the 81st Fighter Squadron and its A-10Cs. The ceremony marks the end of A-10 operations in Europe.

The A-10 was originally designed for combat in Europe, and was seen as a crucial fast-reaction asset that could stop heavy armored thrusts through NATO’s defenses. Now, the 52nd Fighter Wing is left with only F-16 fighters on its roster. Considering the situation in Europe, and likely threats, wouldn’t it have made more sense to remove and retire F-16s? That would have left the A-10s as an inexpensive but uniquely reassuring deterrent for NATO’s eastern flank, with fast deployability to the CENTCOM AOR if needed. Pentagon DVIDS.

Europe, Adieu

April 2/13: APKWS guided rockets. Eglin AFB announces successful tests of the APKWS laser-guided 70mm rocket from an A-10C, marking the 2nd test from a fixed-wing aircraft (a Beechcraft AT-6B was the 1st). For the final A-10C test sortie, 2 APKWS rockets were fired at a surface target at altitudes of 10,000 and 15,000 feet. The first rocket hit within inches, and the 15,000 foot shot hit within 2 meters despite a 70-knot headwind.

The USAF used a US Navy rocket launcher, because the guidance section adds 18″ to the Hydra rocket. If the USAF continues to move forward with APKWS on the A-10C and F-16, they’ll buy the Navy’s modified launchers to replace their 7-rocket LAU-131s. The US Navy is preparing to qualify APKWS on the MQ-8C VTUAV, USMC AV-8B Harrier II V/STOL jets, and F/A-18 family fighters. Pentagon DVIDS.

FY 2012

A-10C fleet cut; 1st re-winged A-10C rolls out; A-10C flies on biofuel; Thales acquires Scorpion HMD. Alcohol-to-Jet
(click to view full)

Nov 5/12: Thales buys Scorpion HMD. Thales announced that it has signed a definitive agreement to acquire Gentex Corp.’s Visionix subsidiary for Helmet Mounted Displays (HMD) and motion tracking. Products include “Intersense” motion tracking, and the Scorpion HMD that equips American A-10Cs. Thales has a strong position in helicopter HMDs with its TopOwl, but it hasn’t had quite as much luck with fighter HMDs. Visionix has good technologies, which can help Thales improve that position against the Elbit/Rockwell joint venture VSI, and secondary competitors BAE systems and Saab Group.

Visionix will operate as a subsidiary of radio supplier Thales Communications, Inc., a Thales USA company that operates independently under a proxy agreement with the U.S. Department of Defense. Its management team will remain, and they’ll continue to operates from Aurora, IL and Billerica, MA. Thales Group.

July 12/12: Sub-contractors. Boeing calls South Korea’s KAI “a key supplier on the A-10 Wing Replacement Program,” while discussing the Korean company’s role in delivering AH-64D Block III attack helicopter fuselages. Boeing is a huge customer for KAI, who supplies parts for commercial jets and F-15s, as well as helicopter fuselages, A-10 wings, etc.

July 10/12: Lockheed Martin Corp. in Owego, NY receives a $7.3 million firm-fixed-price contract for repair service for the A-10 central interface control unit (CICU), and related Circuit Card Assemblies. This computer is also knows as a Signal Data Processor, and the idea is to provide a support bridge, while the USAF gets ready to perform maintenance in-house.

Work will be performed in Owego, NY, and will be complete by Sept 9/12. The USAF GLSC at Hill AFB, UT manages the contract (FA8251-12-D-0005). See also FBO.gov announcement.

June 29/12: Liquored up. An A-10C from Eglin AFB, FL flies using a cellulosic alcohol derivative, called “Alcohol-to-Jet.” That trick works better for the jets than it does for the pilots, apparently. The fuel comes from Colorado’s Gevo, Inc., and can be had for the bargain price of just $56 per gallon.

The $700,000 flight was just a test, obviously. The A-10 is a good test platform for this sort of thing, because its fuel system was segregated in order to help the plane survive hits. The system allows the 2 engines to run off of different fuel supplies, allowing simple performance comparisons. If a test fuel creates failures, the plane can still make it back on one engine. Daily Mail | Terra.com.

Alcohol flight

May 16/12: Flight International:

“The US Air Force has concluded that the short take-off vertical landing (STOVL) Lockheed Martin F-35B- model aircraft cannot generate enough sorties to meet its needs; therefore the service will not consider replacing the Fairchild Republic A-10 Warthog close air support jet with that variant.”

The short take-off F-35B’s ability to base near the battle does multiply the number of flight sorties from each plane, and improves total time over the battlefield. On the other hand, that’s multiplied relative to the F-35A. The A-10 has excellent endurance, whereas the F-35B has to sacrifice fuel capacity in exchange for its short-takeoff and vertical landing capabilities. Beyond that, F-35s of any vintage lack the armoring or gun for in-close support, remove most of their stealth protection if they carry the same array of weapons as an A-10, suffer from the usual problem identifying targets at fast jet speeds, and don’t offer significantly better battlefield sensors than the LITENING-SE or Sniper-SE pods on current A-10s. No matter what the sortie rates may be, replacement of the A-10 with any F-35 is a poor idea.

Feb 15/12: Boeing and the USAF officially roll out of the 1st re-winged A-10C Thunderbolt II in a ceremony at Hill AFB, UT. Boeing is under contract with the Air Force to deliver 233 wing sets through 2018, and delivered the 1st set in March 2011. In the intervening year, the new wings had to be installed, verified, and conduct initial test flights. Boeing.

1st re-winged A-10C

Feb 1/12: US Secretary of the Air Force Michael Donley and Air Force Chief of Staff Gen. Norton Schwartz released a short white paper [PDF] outlining its priorities and choices within forthcoming budget constraints. The A-10 fleet bears the largest cuts by far, even though it has been the most consistently requested plane by troops on the ground in recent wars, and offers high value in both counterinsurgency and full-war scenarios:

“More than 280 aircraft have been identified… for elimination… over the next five years. This includes 123 fighters (102 A-10s [emphasis DID’s] and 21 older F-16s), 133 mobility aircraft (27 C-5As, 65 C-130s, 20 KC-135s, and 21 C-27s), and 30 select ISR systems (18 RQ-4 Block 30s, 11 RC-26s, and one E-8 damaged beyond repair)”

That’s 102 of 345 total A-10s flown, leaving 243 in service. It remains to be seen whether Boeing’s re-winging contract will be cut, but if not, 233/243 A-10Cs left will be re-winged planes. Unconfirmed reports point to the elimination of 2 regular USAF units, plus 3 Guard units: the 107th Fighter Squadron at Selfridge Air National Guard Base (ANGB), MI; the 163rd Fighter Squadron at Fort Wayne ANGB, IN; and the 184th Fighter Squadron at Ebbing ANGB, AK. See Military.com | Salt Lake Tribune | Neoconservative AEI think-tank’s Weekly Standard.

A-10 fleet cuts

FY 2011

A-10Cs to South Korea; TLPS support contracts. A-10 wing work
(click to view full)

Sept 6/11: TLPS. Boeing announces a 1-year, $2.9 million contract to develop and validate a modification of the A-10’s Digital Video Audio Data Recorder (DVADR), which was becoming difficult to support. That’s not uncommon with electronics, which become obsolete much faster than their fighter jets do.

This contract is the 6th Boeing task order under the A-10 Thunderbolt Life-Cycle Program Support (TLPS) program.

Dec 7/10: TLPS. Northrop Grumman announces a set of 3 small task orders under the A-10 Thunderbolt Life-cycle Program Support (TLPS) indefinite delivery/ indefinite quantity contract, worth almost $2 million. Under the terms of the 2-year Aircraft Structural Integrity Program Modernization II task order, Northrop Grumman and its teammate Southwest Research Institute in San Antonio, TX will develop and document non-destructive inspection (NDI) procedures and source data, and report discrepancies found between current technical data program requirements.

The Critical Safety Item (CSI) Technical Deficiency Improvement task order has 1 base year with 3 option years. Along with Wyle Laboratories in El Segundo, CA, and Rowan Catalyst Inc. in Libertyville, IL, the team will identify the engineering and technical correct CSI technical and acquisition data deficiencies.

Northrop Grumman is also teamed with Wyle Laboratories and Rowan Catalyst Inc., for the Critical Systems Component Analysis task, which has 1 base year with 2 option years. The team will perform component analysis of critical systems and provide solutions for increasing system reliability, safety, and aircraft availability; and reducing maintenance requirements and man-hours.

Nov 16/10: To Korea. Brahmand relays reports that the USAF 25th Fighter Squadron has deployed A-10Cs on the Korean peninsula at Osan AB, near Seoul. Subsequent USAF reports indicate that the last A-10A left the base on Dec 4/10, marking the 25th fighter squadron’s transition to an all A-10C force.

FY 2010

A-10C getting a Scorpion HMD, but not Hellfire missiles. A-10A fires Maverick
(click to view full)

Sept 27/10: OFP Suite 7, no Hellfire. A $48 million contract modification which will allow for the “completion of the full A-10 Suite 7 Operational Flight Program.”

Asked about this, Lockheed Martin confirmed that this is part of the A-10C program, adding that the government had reached its ceiling on this contract for mission software, also called Operational Flight Programs (OFPs) or Suites. Like the current modification, the original Oct 19/07 sole source contract ceiling for Suites 6, 7 and 8 was not an award, just a maximum. The government awards funds suite by suite, and based on additional things they wanted to add to the A-10C fleet, they requested this ceiling extension to $123 million total. The USAF has since separated Suite 7 into Suite 7A and Suite 7B, and Lockheed Martin recently received a contract for the remainder of OFP Suite 7A work.

The 2007 award also mentioned Hellfire II missiles, which are not normally fired from jets. Lockheed Martin says that the high cost of developing and purchasing a special missile launch rail for the A-10 caused the USAF to change its mind. The AGM-65 Maverick missile can perform the same role at a higher cost per missile, and Hellfire’s forthcoming JAGM missile successor is expected to work with fast jets (FA8635-07-D-6000, PO0012).

July 19/10: Scorpion HMD. Raytheon announces a $12.6 million USAF contract for Phase 1 integration and qualification of the Helmet Mounted Integrated Targeting (HMIT) system for USAF and Air National Guard A-10C and F-16C Block 30/32 aircraft. Raytheon Technical Services Company LLC (RTSC), the prime contractor, is teamed with Gentex Corp. in Simpson, PA to produce the system, based on Gentex’s Visionix Scorpion(TM) Helmet Mounted Cueing System.

HMIT will be a night-vision compatible helmet-mounted display that shows crucial information in high-resolution color imagery directly in the pilot’s field of vision. The color imagery is a step forward, and information displayed will include weapons-cueing, targeting and situational data from on-board and remote sensors. Like other HMDs, the system will track helmet movement to display accurate imagery, regardless of the direction the pilot’s head is turned. The program includes 5 one-year production options, with a potential total value up to $50 million.

April 13/10: Sub-contractors. CPI Aerostructures, Inc. of Edgwood, NY announces an additional $10 million in orders from Boeing in support of the A-10 fleet’s $2 billion re-winging effort. The original contract with Boeing was for $70 million (see July 1/08 entry).

Boeing has added additional structural assemblies and subsystem installations to the CPI Aero contract. These additions include pylon covers, center trailing edge wedge fittings, lower outer trailing edge panels, wingtip covers, wingtip light installations and aileron light installations.

Nov 20/09: OFP. Lockheed Martin announces a $17.8 million contract from the US Air Force to upgrade software that integrates communications and situational awareness capabilities on the A-10C close air support aircraft. The software upgrade is the 3rd in an annual series planned for the A-10 and is scheduled for release in May 2011. The earlier two upgrades were also performed by Lockheed Martin; the first was fielded on schedule in May 2009 and the second is on target for release in May 2010.

The software upgrade will provide improved pilot vehicle interface (PVI) and weapons delivery. Also included with the upgrade are software baselines for the helmet-mounted cueing system that provides situational awareness through improved visual cues for the pilot and for the lightweight airborne recovery system that integrates search and rescue capability. The upgrades will be integrated in Lockheed Martin’s A-10 Systems Integration Lab in Owego, NY. Lockheed Martin A-10 industry team includes Southwest Research Institute in San Antonio, TX and Northrop Grumman in St. Augustine, FL.

Nov 11/09: TLPS. Northrop Grumman announces an 18-month, $3.3 million A-10 TLPS contract to develop and test an anti-jam embedded GPS and an inertial navigation unit (EGI) for the A-10C. Northrop Grumman Technical Services will perform an integrated architecture and life cycle costs analysis and install a temporary modification. The company will then develop a system safety program, and provide program and engineering management support in order to conduct an operational assessment of the EGI capability during flight test. Northrop Grumman’s team includes subcontractors BAE Systems Control Inc., Johnson City, N.Y., and Borsight Aerospace, Farmington, Utah.

FY 2009

$1.72 billion TLPS multi-award maintenance contract; A-10C adds Laser JDAM; Wing cracking in 130 planes. LJDAM test from A-10C
(click to view full)

Sept 24/09: Boeing announces that it received 2 separate contracts from the US Air Force to support modernization of its 365 A-10A+ and A-10C Thunderbolt II aircraft. The contracts, which have a total value of $4.2 million, consists of several tasks ranging in duration from 3 to 18 months as part of the A-10 Thunderbolt Life-Cycle Program Support (TLPS) contract. For details on the TLPS contract, see the June 11/09 entry.

Under the 1st contract, Boeing and the Southwest Research Institute (SwRI) will provide engineering services for the A-10 Aircraft Structural Integrity Program (ASIP), which involves updating and aligning modern structural analysis tools, processes and standards for the A-10 fleet. Under the 2nd contract, Boeing, Raytheon Technical Services, and BAE Systems Platform Solutions will conduct a trade study analysis and operational assessment/proof of concept for the A-10 Upgraded Data Transfer Unit (UDTU). The goal of this contract is to update the aircraft’s avionics architecture to improve memory and data capability.

Other A-10 contracts Boeing has received include a contract to provide on-site engineering support and 3-D models of the A-10 wing, and a contract for fuselage lofting – the transfer of a scaled-down plan to full size. The $2 billion A-10 Wing Replacement Program, which Boeing received in June 2007 (see June 29/07 entry), plans to manufacture up to 242 enhanced wing assemblies. The 3-D models allow the Air Force to resolve wing-crack issues that temporarily grounded the A-10 fleet in 2008 (see Oct 3/08 entry).

June 11/09: TLPS. The A-10 Thunderbolt Life-Cycle Program Support (TLPS) “provides a multiple-award indefinite delivery/ indefinite quantity contract vehicle to sustain and modernize all A-10 weapon system configuration.” It’s a follow-on to the A-10 Prime Contract, which was competitively awarded to Lockheed Martin in 1997. A-10 TLPS could run for up to 10 years, with an initial 4-year award that can be followed by up to 3 more 2-year option periods. All funds have been obligated, and the A-10 TLPS is managed by the 538 ACSG/PK at Hill Air Force Base, UT.

The Aug 29/08 entry explains the key rule change from the USA’s 2008 Defense Authorization Act, which requires DoD task & delivery order contracts exceeding $100 million to be awarded to multiple contractors. The USAF will select up to 3 contractors to compete for individual A-10 TLPS orders over the life of the contract, which will include avionics, mechanical, structural, and propulsion system upgrade work and a program integration support. The 3 winners of the $1.72 billion total contract are:

  • Lockheed Martin Systems Integration in Owego, NY (FA8202-09-D-0002). Current incumbents. Partnered with Southwest Research Institute in San Antonio TX; and Northrop Grumman in St. Augustine, FL.

  • Boeing subsidiary McDonnell Douglas Corp. in Saint Louis, MO (FA8202-09-D-0001). Also on contract for the $2.015 billion A-10 re-winging program (q.v. June 29/07 entry).

  • Northrop Grumman Technical Services, Inc. in Herndon, VA (FA8202-09-D-0003). NGC will manage the program from Clearfield, UT. Work will also be performed at Warner Robins, GA; Bethpage, NY; El Segundo, CA; and Rolling Meadows, IL.

See also: Lockheed Martin | Boeing | Northrop Grumman.

TLPS support contract

June 11/09: TLPS. Boeing’s A-10 TLPS release adds information concerning the separate $2.015 billion A-10 Wing Replacement Program:

“The work remains on schedule as Boeing develops the 3-D models that provide the engineering foundation for production of the new wings. The models also allowed Boeing to help the Air Force quickly resolve wing-crack issues that temporarily grounded the A-10 fleet last year.”

June 11/09: A-10PE Update. Lockheed Martin’s A-10 TLPS release adds some details concerning the separate A-10C Precision Engagement program:

“Lockheed Martin will remain under contract to complete efforts that are underway including work to provide Precision Engagement modification kits through 2011… To date, the Air Force has converted more than 200 of the 356 aircraft fleet. The A-10C was declared combat ready in August, 2007… In 2007, Lockheed Martin Systems Integration – Owego and the Air Force were co-recipients of a Top 5 DoD Program Award from the National Defense Industrial Association and the Department of Defense for A-10 systems engineering and program management excellence.”

Feb 4/09: TLPS. Boeing announces that it has submitted a proposal to the to the USAF for the $1.6 billion A-10 Thunderbolt Life-Cycle Program Support (TLPS) contract. This is a separate endeavor from the A-10C PE program, but it will have connections to ongoing modernization work.

Boeing is looking to leverage its work creating 3-D models of the plane under the $2 billion A-10 Wing Replacement Program. The A-10 was designed in the 1970s, and 3-D modeling was not used at the time. Lockheed Martin currently handles a large share of A-10 work, and competition is also expected from BAE Systems and L-3 Communications. Boeing release.

Jan 12/09: Cracking up. DoD Buzz quotes 12th Air Force commander Lt. Gen. Norman Seip, who says the USAF has inspected 200 of 244 aircraft with thin wings. Of those, 40% remain grounded, 41% have been inspected and returned to flight and the remainder are considered “flyable and awaiting inspection.” June 2009 remains the target date for a fix. Among the “thick winged” A-10s, 30% are still grounded, 23% will keep flying and the rest should be ready by June 2009.

The USAF’s challenge has been to keep all of the pilots current in their required flight hours for pilot certification, while providing enough aircraft to meet front-line combat needs.

Nov 14/08: LJDAM. The USAF announces that an upgraded USAF A-10C has dropped the GBU-54 LJDAM in a successful test. The next step is operational testing to develop tactics and techniques for employing the 500 pound dual laser/GPS guidance bombs from A-10s, who can use them to hit moving targets or drop bombs through clouds.

If those tests continue to go well, Eglin AFB’s test team may have their feedback as early as January. The goal is to have the LJDAM/A-10C combination deployed on the front lines by early 2009.

Nov 12/08: Cracking up. USAF release: Approximately 5 members of a depot maintenance team from Ogden Air Logistics Center at Hill Air Force Base, UT arrive at Moody AFB. They will provide hands-on training to perform major crack repairs on A-10 aircraft to Moody maintainers and another 40 active duty, Reserve and Guard maintainers from bases including Davis-Monthan AFB, AZ, Nellis AFB, NV, Whiteman AFB, MO, and Willow Grove Air Reserve Station, PA. Master Sgt. Steve Grimes, Air Combat Command Headquarters A-10 maintenance liaison:

“It would cost too much to fly all the aircraft to Hill. It would also take longer to repair all since three could only be sent at a time. This method is more cost-effective and it would be a faster way to repair the A-10s.”

Oct 3/08: Cracking up. The USAF announces “a time compliance technical order requiring immediate inspection and repair of wing cracks” for approximately 130 A-10 aircraft that were originally built with thin-skin wings.

“Such action has become necessary due to an increase in fatigue-related wing cracks currently occurring in aircraft assigned to Air Combat Command, Pacific Air Forces, the Air National Guard, Air Force Reserve Command and Air Force Materiel Command… The inspections, however, will not impact on-going or future operational combat missions.”

The USAF explicitly notes this as one of the issues associated with its aging aircraft fleet. The US military currently has about 400 active A-10s. See USAF release | Reuters.

Wing cracking grounds 130 A-10s

FY 2008

USAF prepared to compete future support; A-10C #100 delivered; Creating a 3-D model of the A-10. A-10C at Davis-Monthan
2006-11-29
(click to view full)

Aug 29/08: New Rules. Aviation Week reports that the A-10C program is likely to be an early test case for a dramatic rule change inserted in the USA’s 2008 Defense Authorization Act, which requires DoD task & delivery order contracts exceeding $100 million to be awarded to multiple contractors.

The kits that upgrade the A-10A to an A-10C are still sole-sourced to Lockheed Martin, but that’s about to change. A final RFP is expected soon, and the current plan is for 3 associate prime contractors to win a “multiple award” contract that lets them compete for individual task orders. The Air Force will reportedly oversee all modifications above and beyond the A-10 Precision Engagement aircraft under the Thunderbolt Lifecycle Program Support (TLPS) contract, with a $1.6 billion ceiling over 5 years and an additional 5-year option.

Boeing, who has extensive fighter experience and makes new A-10 wings under the $2 billion re-winging program, is likely to add itself to the mix. L-3 Communications also has strong experience with aircraft refurbishment and upgrades, and BAE Systems is heavily involved in the A-10A+ program.

July 1/08: Sub-contractors. CPI Aerostructures, Inc. of Edgwood, NY announces a long-term, $70 million requirements from Boeing in support of the A-10 fleet’s $2 billion re-winging effort.

The first ordering period is to run until Sept 30/11, with an additional option period that runs from Oct 1/11 through Sept 30/16. CPI expects to receive the initial order under this contract within the next 30 days.

June 19/08: Model me. Integrating new weapons and systems onto new aircraft involved aerodynamic and mechanical considerations, in addition to electronic compatibility. Modern engineering practices offer comprehensive 3-D design drawings that account for every part, and can be used to create models that reduce the trial-and-error associated with new work. An aircraft designed in the 1970s wouldn’t have those 3-D CAD/CAM models to work from, however, which is where Eglin AFB’s 46th Test Wing’s SEEK EAGLE office enters the picture.

Visibility Size and Shape Targeting Accuracy Room Scale (V-STARS) uses a photogrammetry system of triangulation to collect thousands of data points involving every external surface of an aircraft. These data points are then used to create a model that’s accurate to within 0.03 inches of the aircraft measured. The B-52H bomber has already been through this process, and now the SEEK EAGLE office is measuring an A-10C on loan from the Maryland National Guard. The 1000,000 data points that result will build an A-10C model that can be used when integrating future weapons. USAF.

Jan 22/08: Wings. Boeing announces a $14.9 million U.S. Air Force contract for systems engineering and modeling services under the A-10 Wing Replacement program (see April 2/07 and June 29/07). William Moorefield, Boeing A-10 Wing Replacement program manager, said that the contract will provide the engineering foundation for the program; the goal is “a true paperless engineering package.”

Boeing will perform the majority of the work in St. Louis, MO, with the remaining work done in Salt Lake City, UT. The contract runs through September 2010.

Jan 18/08: #100. The USAF announces that the 100th A-10C has taken off and flown from Hill AFB, UT to Moody AFB, GA. Aircraft 80-0172 was based at Pope AFB, NC before the modification, but transfers to Moody AFB as part of the base realignment and closure (BRAC 2005) recommendations.

On average, the 571st Aircraft Maintenance Squadron technicians at Hill AFB are upgrading each A-10 aircraft to the new A-10C configuration in less than 90 days. The A-10C Precision Engagement program started in the 309th Aircraft Maintenance Group in July 2006.

100th A-10C delivered

Oct 19/07: OFP. Lockheed Martin Systems Integration of Owego, NY receives a $75 million contract modification to fund the A-10C’s Operational Flight Program (OFP) Hardware Improvement Program for the plane’s mission computers, and Development and Integration of mission software Suites 6, 7, and 8, including Hellfire II Missile Development and Integration. This is just an umbrella contract and ceiling, no funds have been obligated by the 642th AESS/PK at Wright-Patterson AFB, OH (FA8635-07-D-6000).

The USAF eventually decided to abandon Hellfire II missiles on the A-10C.

FY 2007

$2.015 billion contract for new wings; 25 more kits; Work on SADL datalink; A-10C arrives and reaches IOC. IOC ceremony
(click to view full)

Aug 22/07: Basing. The USAF announces that an associate group of about 215 reservists will support the active duty 23rd Wing at Moody Air Force Base, GA, while a smaller associate detachment of 14 reservists will augment the A-10 Formal Training Unit at Davis-Monthan AFB, AZ. The arrangement means the reservists and active-duty personnel have opportunities to train and deploy as a unit; development of fighter associate units began in March 1997 with the launching of the Fighter Reserve Associate Test program. The success of that program led to the signing of an agreement in April 2003 by the commanders of ACC (Air Combat Command) and AFRC (Air Force Reserve Command) to establish fighter associate units at ACC F-16 Fighting Falcon and F-15 Eagle locations.

“Reservists in the Moody group will fly and maintain the A-10s with the regular component under the classic associate unit structure. The first A-10C Thunderbolt II arrived at Moody Aug. 7. About 50 of the upgraded aircraft will move to the Georgia base as a part of force realignment.”

Aug 21/07: IOC. The precision engagement modified A-10C Thunderbolt II receives its Initial Operational Capability certification at a Langley AFB, VA ceremony. The USAF report says that around 75 A-10s have already been upgraded as of IOC receipt.

Aug 7/07: A-10C #1. The first A-10C arrives at Moody AFB, GA.

1st arrival & IOC

July 18/07: AFSOC A-10s? Jane’s Defense Weekly mentions that USAF Chief of Staff General Michael Moseley has told Jane’s he is considering the creation of a new counterinsurgency (COIN) squadron of A-10A Thunderbolt II aircraft for the Air Force Special Operations Command (AFSOC). Gen Moseley said he is mulling the possibility of putting a squadron of A-10A close-support aircraft inside AFSOC to serve US Special Operations Command, which has the lead engagement role in the US-declared global war on terrorism.

The A-10C would certainly be useful in this role as it comes into service; a 2-seater all-weather version like the canceled A/OA-10B would have been even more useful in situations like this.

July 10/07: Sub-contractors. Rockwell Collins Government Systems, Inc. in Cedar Rapids, IA received a $24.85 million modification to a previously awarded firm-fixed-priced contract, exercising an option for AN/ARC-210(V) Electronic Protection Radio Systems. The AN/ARC-210 Multimode Integrated Communications System provides 2 way multimode voice and data communications over the 30-512 MHz frequency range in either normal, secure or jam-resistant modes via LOS or satellite communications (SATCOM) links.

The ARC-210 family of equipment is made up of several variants of the receiver-transmitter, each providing a specific combination of functionality. This modification consists of 329 each RT-1851 ARC-210 Receiver-Transmitter Radios; 323 each C-12561 Radio Control Sets, and 294 each MT-4935 Mounting Bases for the USAF’s A-10 aircraft. Work will be performed in Cedar Rapids, IA, and is expected to be complete in July 2008. The Naval Air Systems Command, at Patuxent River, MD issued the contract (N00019-05-C-0050).

June 29/07: New wings. Boeing subsidiary McDonnell Douglas Corp. in St Louis, MO received an indefinite-delivery/ indefinite-quantity, firm-fixed-price with economic price adjustment contract for $2.015 billion for Engineering Services plus 242 enhanced A-10 Wing sets. The new wings will extend the planes’ life to 16,000 flight hours, and the program calls for the replacement wing sets to be delivered in parts and kits for easy installation. See also our April 2/07 item, which mentions the USAF’s original estimate of $1.3 billion for this program.

Solicitations began November 2006, negotiations were completed May 2007, and $74.2 million has been committed as of the award announcement. Work on the contract could run from 2007-2018, with a base ordering period from June 2007 – September 2011, plus an option period that runs from Oct 2011 – September 2016. The Headquarters Ogden Air Logistics Center at Hill Air Force Base, UT issued the contract (FA8202-07-D-0004). Boeing release

Re-winging contract

April 11/07: +25 kits. A $17.6 million firm-fixed-price contract modification to produce and deliver A/OA-10 Aircraft Precision Engagement production kits and associated items. This will include: 25 Precision Engagement Modification Kits, 30 Portable Automated Test Sets, 5 Throttle Quadrant Tester Upgrades, 25 Third SP103 Single Board Computers, 30 Stick Grip Attachment, and 357 Throttle Grip Covers. At this time, $8.8 million have been obligated, and work will be complete January 2009 (FA8202-05-C-0004/P00022).

April 11/07: SADL. Lockheed Martin Corp. in Owego, NY received a $70 million indefinite delivery/ indefinite quantity, firm-fixed-price and cost-plus-fixed-fee and time-and-materials contract. This action covers continuing development, integration, and production of Raytheon’s Situation Awareness Data Link (SADL), and Improved Date Modem (IDM) efforts in support of on-going A-10C Precision Engagement (PE) fleet modernization and upgrade efforts. At this time, $4.1 million have been obligated, and work will be complete December 2009. The Headquarters Aeronautical Systems Center at Wright-Patterson Air Force Base, OH (FA8635-07-D-6015).

April 9/07: SADL. The A-10 Prime Team announces successful delivery of the full-function Situational Awareness Data Link (SADL) capability to the U.S. Air Force for developmental flight testing. The U.S. Air Force is expected to conduct developmental flight test of the SADL capability through May 2007 at Eglin Air Force Base, FL. SADL is expected to be fielded to operational A-10 units by September 2007. Lockheed Martin release.

April 2/07: GAO Report – Costs. The US Government Accountability Office releases #GAO-07-415 – ‘Tactical Aircraft: DOD Needs a Joint and Integrated Investment Strategy’. A key excerpt:

“The Air Force will retain the A-10 “Warthog” fleet in its inventory much longer than planned because of its relevant combat capabilities– demonstrated first during Desert Storm and now in the ongoing Global War on Terror. However, because of post-Cold War plans to retire the fleet in the early 1990s, the Air Force had spent little money on major upgrades and depot maintenance for at least 10 years. As a result, the Air Force faces a large backlog of structural repairs and modifications – much of it unfunded – and will likely identify more unplanned work as older aircraft are inspected and opened up for maintenance. Major efforts to upgrade avionics, modernize cockpit controls, and replace wings are funded and underway. Program officials identified a current unfunded requirement of $2.7 billion, including $2.1 billion for engine upgrades, which some Air Force officials say is not needed. A comprehensive service life extension program (if required) could cost billions more.”

…A major re-winging effort is planned for 2007 through 2016 that will replace the “thin skin” wings on 242 aircraft at an estimated cost of $1.3 billion. This effort will help to extend the A-10’s service life to 16,000 hours… Total cost to complete the [Precision Engagement] modification is estimated to be $420 million.”

GAO on costs

March 27/07: EMD. Lockheed Martin announces a $40.4 million contract modification to complete the A-10C Precision Engagement program’s engineering and manufacturing development (EMD) phase. Work will continue through May 2008 to conclude development of the Precision Engagement software suite and to support flight testing conducted by U.S. Air Force. Lockheed Martin release.

Oct 17/06: Update. The USAF reports that as of October 2006, 21 A-10C aircraft have been modified at Ogden Air Logistics Center at Hill AFB, Utah; the entire fleet of 356 active aircraft are to receive the upgrades, including active duty, Reserve and Air National Guard Warthogs.

FY 2005 – 2006

179 upgrade kit orders (or is it 239?); DSMS delivered. The Warthog in Winter
(click to view full)

Sept 27/06: +107 Kits. A $49 million firm-fixed-price, cost-plus-incentive fee and time and material contract. Lockheed Martin’s release cites 107 PE kits, representing the 2nd production lot following the initial award for 72 kits in March 2005:

“The contractor shall provide total systems performance responsibility for A-10 aircraft integration by managing all system problems to a final solution. Interfaces are maintained between the performance work systems primary areas of modifications, system test/evaluation, project management, system engineering, and facilities.”

DID’s own records show 2005 orders for 132 kits, but we’ll go with the manufacturer’s numbers. At this time, $1.3 million have been obligated, and work will be complete September 2010. The 309th Aircraft Maintenance Group at Hill AFB, UT began installing the first award production kits in March 2006 (FA8202-06-D-0001)

March 21/06: DSMS. Lockheed Martin announces that the A-10 Prime Team has delivered the Digital Stores Management System (DSMS) to the U.S. Air Force’s A-10C flight-test program as scheduled. The new system is integrated with the Sniper ATP and LITENING surveillance and targeting pods, and automates many of the weapons control functions that A-10 pilots today perform manually.

Integration of the targeting pods and DSMS took place in Lockheed Martin’s A-10 Systems Integration Lab (SIL) in Owego, NY, where A-10 pilots validated and refined the mechanization of the upgrade before official release of the software to ground and flight test. “The pilot reviews saved significant ground and flight test time,” said Roger Il Grande, A-10 program director at Lockheed Martin Systems Integration – Owego. Built by Lockheed Martin in 2003, the SIL duplicates the aircraft’s wiring and cabling infrastructure, and is outfitted with actual weapon hardware, missile seekers, suspension racks and rocket launchers to emulate an A-10 aircraft on the flight line.

July 25/05: Kits. A $9.1 million firm-fixed-price contract modification to provide for 72 A-10 aircraft precision engagement spiral 1 modification kits with 3 option years and associated test equipment. Looks like an adjustment to a previous order.

At this time, the total amount of funds has been obligated. Work will be complete at a rate of 6 per month beginning 13 months after receipt of order. Solicitation began July 2004 (FA8202-05-C-0004, PZ001).

June 28/05: Sub-contractors. Enertec America in Alpharetta, GA received a $15.3 million firm-fixed-price modification to provide for A-10 digital video and data recorders. Total funds have been obligated, negotiations were completed June 2005, and work will be complete by November 2006 (FA8202-04-C-0023, P00005).

Feb 22/05: +60 Kits? A $28.5 million, firm fixed price, time and materials contract modification for 60 A-10 Thunderbolt II fighter precision engagement Spiral 1 modification kits, along with associated parts and test equipment.

Solicitations began July 2004, negotiations were complete in July 2005, and work will begin 13 months after the exercising option and will refit 6 aircraft per month after that (FA8202-05-C-0004/P00002).

Feb 17/05: +72 Kits. A $37.8 million contract to provide the U.S. Air Force with 72 Precision Engagement Spiral 1 production kits to modify A/OA-10 “Warthog” close air support aircraft, plus associated test equipment. At this time, $28.3 million of the funds have been obligated. Solicitation began July 2004 (FA8202-05-C-0004). Lockheed Martin release.

The production kits, a result of work by Lockheed Martin, BAE Systems and Southwest Research Institute, are one component of the Precision Engagement program.

FY 2004 and earlier

Main upgrade contract; Sniper pods for A-10Cs. Sniper XR

Feb 12/04: Sniper. Lockheed Martin announces a contract to integrate the Sniper XR targeting pod on the A-10 aircraft in support of the A-10 Precision Engagement (PE) Program. The contract award follows a successful demonstration of the Sniper system during the A/OA-10 Precision Engagement upgrade program’s critical design review.

Some existing A-10s do fly with targeting pods, but they’re earlier models of Northrop Grumman’s LITENING pod. The USAF picked Sniper as its future targeting pod in 2001 (though they’d shift to a dual-pod approach again in 2010), and the current contract will ensure that Sniper pods work seamlessly with the A-10’s upgraded stores management systems, pilot displays, weapon targeting, etc.

As part of the integration effort, Lockheed Martin Missiles and Fire Control will develop the Pilot Vehicle Interface (PVI), pod Operational Flight Program (OFP) software, and pod interface adapter hardware for the A-10. Upon completion of this effort, the Sniper XR pod will self-detect and automatically load the appropriate Operational Flight Program when installed on either the A-10, F-16 or F-15E airframes.

Feb 15/01: Lockheed Martin announces the contract win, stating that:

“The A/OA-10 Prime contract modification has an estimated value of $226 million, $74 million for the Engineering, Manufacturing and Development (EMD) phase through 2004 with follow-on production at $152 million.

This innovative government and industry teamwork approach cost-effectively combines multiple A-10 upgrade requirements into one program that fits within current available funding and saves the U.S. Air Force approximately $150 million over the cost of executing the requirements as standalone projects. The Precision Engagement modification also provides the A-10 fleet with enhanced close-air support and precision strike capability earlier than originally planned.

During the EMD phase, the company’s Aerospace Systems business unit will design, manufacture and test the Precision Engagement system. This effort involves the installation of a digital stores management system for cockpit interface with its weapon systems; new cockpit displays; a Situational Awareness Data Link (SADL) to provide accurate information about friendly forces and potential threats; a Direct-Current (DC) generator upgrade; and the integration of guided weapons such as the Joint Direct Attack Munition (JDAM) and Wind Corrected Munitions Dispenser (WCMD) along with future targeting pod integration. Follow-on efforts will then outfit the entire A-10 fleet.”

A-10C upgrade contract

Additional Research Background: A-10 Platform & Enhancements

News & Views

Categories: Defence`s Feeds

Next-Stage C4ISR Bandwidth: The AEHF Satellite Program

Defense Industry Daily - Fri, 22/05/2015 - 02:01
AEHF concept
(click to view full)

The USA’s new Advanced Extremely High Frequency (AEHF) satellites will support twice as many tactical networks as the current Milstar II satellites, while providing 10-12 times the bandwidth capacity and 6 times the data rate transfer speed. With the cancellation of the higher-capacity TSAT program, AEHF will form the secure, hardened backbone of the Pentagon’s future Military Satellite Communications (MILSATCOM) architecture, with a mission set that includes nuclear command and control. Its companion Family of Advanced Beyond-line-of-sight Terminals (FAB-T) program will give the US military more modern, higher-bandwidth receiving capabilities, and add more flexibility on the front lines. The program has international components, and partners currently include Britain, Canada, and the Netherlands.

This article offers a look at the AEHF system’s rationale and capabilities, while offering insight into some of the program’s problems, and an updated timeline covering over $5 billion worth of contracts since the program’s inception.

The AEHF Program Program Status and Budgets

The decline in GAO program coverage creates some challenges in making apples to apples comparisons, but the trends are clear. Like a number of American satellite development programs, AEHF has been cited for cost overruns and schedule slips. Part of the reason involves the US National Security Agency’s failure to furnish key cryptography requirements and specifications, and mechanical and construction difficulties were also involved.

Yo-yoing constellation size played a role of its own in program total changes, while creating cost spikes for individual satellites. Satellites 5 & 6 are expected to cost almost double the average for SV 1-3, owing to a production line that was interrupted and restarted because the decisions to add more satellites came after a gap of 4 years. That was too late to keep the production line from closing temporarily, and re-starts are difficult and expensive.

Note that USAF budgets do not include the US Army’s small participation, contributions from international partners, or RDT&E funding beyond FY 2014:

Past and Future C4ISR Future?
(click to expand)

The AEHF partnership program currently involves 4 operational and 2 reserve satellites, and includes Britain, Canada, and the Netherlands.

AEHF began as a program in April 1999, and development began in September 2001. The production decision was made in June 2004, and the original intent was to launch the first satellite in late 2007. NSA delays in providing key cryptographic requirements ended up being very expensive, and other technical difficulties also pushed the program back. First launch didn’t take place until August 2010.

Along the way, the AEHF program’s size has yo-yoed. In December 2002, optional satellites 4 and 5 were deleted from the program, with the intention of making AEHF only an interim bridge to the larger Transformational Satellite Network (T-SAT) and its ultra-high bandwidth laser interlinks. As TSAT faltered, however, the AEHF bridge became the destination.

The first indication of shifts in the program came when the Pentagon’s April 2008 Selected Acquisition Reports confirmed that the program had expanded to add AEHF-4. The TSAT successor program was restructured, but in June 2009, Secretary of Defense Gates finally lowered the boom and confirmed that the Pentagon intended to kill TSAT, leaving Advanced EHF satellites as the military’s main future guarantors of secure, hardened bandwidth. In response, the US military expanded and internationalized the Wideband Global SATCOM (WGS), restored AEHF SV-5 to the hardened constellation, and eventually added a 6th AEHF satellite in April 2010.

The 5th and 6th satellites are currently planned as a reserve that will replace the first 2. Even so, the USAF is considering a 7th and 8th satellite, as it works through an Analysis of Alternatives for its “Resilient Basis for SATCOM (RBS) in Joint Operations” study. The exact nature of the AEHF Follow-On will be informed by this protected MILSATCOM AoA.

Down here on Earth, the companion FAB-T (Family of Advanced Beyond-line-of-sight Terminals) development effort aimed to create a family of software-defined radios that could become a common terminal for the next generation of High Data Satellite Communications, including AEHF, Wideband Gapfiller, and other future satellite systems. It’s aimed at aircraft, and the NSA’s poor handling of its cryptographic challenges has contributed to the overall program’s delays and cost overruns. A limited production contract is expected by mid-2014.

Beyond Boeing’s FAB-T, a number of vendors are developing and fielding SATCOM solutions that are compatible with AEHF, for use by land and naval assets.

Launch Plans and Dates The Process
click for video

AEHF Space Vehicle-1 (SV-1) launched in August 2010, almost 3 years later than originally planned, but slightly earlier than some 2010 reports had expected. It encountered serious propulsion problems, which left it well short of its operational orbit, but ground control found some timely workarounds the eventually got the satellite to its orbital plane. The flip side is that instead of conducting on-orbit testing in August 2010, the USAF had to wait until November 2011. Meanwhile, AEHF SV-2 and SV-3 were ready, but SV-1’s technical failure and delayed on-orbit tests left them on hold.

AEHF SV-2 was slated for launch in May 2011, but was eventually launched on May 4/12.

AEHF SV-3 missed its January 2012 window. A full launch schedule meant that the launch ended up taking place on Sept 18/13.

AEHF SV-4 is still expected to launch in Q3 (spring) FY 2017, which tracks with the 4-year delay before the additional order.

SV-5 was supposed to follow in 2018, and SV-6 in 2020, but they’ve been shifted to a reserve role instead. Despite the US military’s exploding demand for bandwidth, they’ll be used as end-of-life replacements for SV-1 and SV-2, or as an emergency replacement option for any AEHF satellite that malfunctions or is destroyed.

The AEHF Satellites

Advanced EHF satellites will provide at least 10 times greater total capacity, and offer channel data rates 6 times higher, than current Milstar II communications satellites. These new hardened and crosslinked satellites are designed to be very hard to jam, while surviving shocks that can include EMP radiation surges from atmospheric nuclear blasts. They’ll offer 24-hour low, medium, and high data rate satellite connectivity from 65 N to 65 S latitude, worldwide.

Each Advanced EHF satellite employs more than 50 communications channels via multiple, simultaneous downlinks. To accomplish their goal of 10x capacity and 6x channel data of existing Milstar II satellites, Advanced EHF adds new higher data-rate transmission modes:

Each satellite uses than 800 ASICs (chips) delivered by Honeywell Aerospace in Plymouth, MN, and BAE Systems of Arlington, VA. These customized chips benefit from general advances in chip density and speed since the existing MILSTAR constellation was built, which means reduced weight. Each AEHF payload includes:

  • 25 computers
  • Almost 1 million lines of software code
  • 70 unique monolithic microwave integrated circuit (MMIC) chip designs – almost 18,000 total MMICs
  • More than 50 unique integrated microwave assemblies and hybrid designs – over 13,000 total.

AEHF is X-band capable for high-bandwidth data rates, in addition to the Milstar low data rate and medium data rate modes that ensure backward compatibility. The crosslinks eliminate the need to route messages via terrestrial systems, which cuts some of the latency associated with satellite links.

Bandwidth is already a significant constraint in theater, and these higher data rates will allow more transmission of tactical military communications into remote areas, to include real-time video, battlefield maps, and targeting data.

The AEHF Satellites: Contracts & Key Events Payload testing
(click to view full)

The Pentagon DefenseLINK summaries of awarded AEHF contracts were unusually informative, providing a commendable level of insight into the program and its challenges. Note, especially, the effects of key delays from NSA re: cryptography in the early years. We’ve also broken out the AEHF’s FAB-T terminals that will connect the military to the AEHF network and other satellites. Though the satellites and terminals are intertwined on many levels, and some cryptography-related contracts may mention neither but apply to both, separation of these contracts adds more clarity.

As of January 2013, Lockheed Martin is under contract for 6 satellites.

Unless otherwise specified, the USAF Headquarters Space and Missile Systems Center in Los Angeles, CA has issued the following requisitions under contract #F04701-02-C-0002:

Satellites FY 2014 – 2015

SV-4 launch prep. NGC on AEHF

May 22/15: Lockheed Martin has been awarded a $735 million support contract for the Air Force’s Advanced Extremely High Frequency Satellites, Milstar and Defense Satellite Communications System III. The company was awarded a similar contract for the latter two in 2009.

Dec 27/13: SV-4 launch prep. Lockheed Martin Space Systems Co., Sunnyvale, CA receives a $116.1 million cost-plus-incentive-fee contract modification for AEHF SV-4 (q.v. Dec 15/10) launch operations, including support to integrate the satellite into the launch rocket. Launch preparation activities begin at launch minus 12 months, and include an early orbit operations rehearsal campaign alongside the physical preparations.

$2 million in USAF FY 2014 missile procurement funds are committed immediately. Work will be performed at Sunnyvale, CA, and El Segundo, CA, and is expected to be complete July 31/19. The USAF Space and Missile Systems Center, PKJ, Los Angeles Air Force Base, CA, is the contracting activity (F04701-02-C-0002, PO 0548).

Satellites FY 2013

SV-5 & SV-6; SAR is sort of good news; Canada begins using AEHF. Encapsulation
(click to view full)

Sept 18/13: AEHF-3 launch. A Delta V 531 rocket blasts off from Cape Canaveral, and successfully launches AEHF-3. The satellite will spend the next 110 days thrusting to raise its orbit, followed by about 60 days of on-orbit testing. It’s ULA’s 40th mission with the Atlas V EELV.

AEHF-3 was encapsulated in its 5m diameter fairing on Sept 11/13. Sources: ULA | USAF Los Angeles AFB | Lockheed Martin.

AEHF-3 launched

Sept 16/13: IOC Delay. Inside Defense Reports that the USAF is citing Software Development Difficulties as the reason for delaying AEHF’s Initial Operational Capability designation by a year. Source: Inside Defense, “Air Force Delays Key AEHF Milestone One Year, Citing Software Development Difficulties”.

IOC delayed

Sept 12/13: Netherlands. Lockheed Martin reveals that in July 2013, the Dutch tested engaging AEHF-1 and AEHF-2, exchanging voice and data communications with the U.S. and Canada by connecting to the AEHF-2 satellite, crosslinking with AEHF-1, then downlinking to the U.S. Navy terminal in San Diego and a Canadian terminal at Shirley’s Bay, Ontario. They also completed their first local AEHF call from ship to shore, using international versions of the Navy Multi-Band and SMART-T terminals. Source: Lockheed Martin, Sept 12/13 release.

June 20/13: Canada. A U.S.-Canada team has successfully communicated with the USAF’s 4th Space Operations Squadron at Schriever Air Force Base, CO, using AEHF-1 satellite and a SMART-T terminal variant to exchange data from a location near Ottawa, Canada. Follow-on tests involved multiple Navy Multi-Band IP variant terminals exchanging data over AEHF networks.

Canada is the 1st international partner to reach this point, and will continue testing for several months as their forces move toward initial operational capability. Britain and the Netherlands are scheduled to complete their first terminal connections by the end of 2013. Lockheed Martin.

May 24/13: SAR. The Pentagon finally releases its Dec 31/12 Selected Acquisitions Report [PDF], and AEHF is a good news story. Not completely good news, given the raised costs for these satellites thanks to the production gap, but $500 million is always nice:

“Advanced Extremely High Frequency (AEHF) Satellite – The AEHF program is comprised of two subprograms, Space Vehicles 1-4 and Space Vehicles 5-6. Only the Space Vehicles 5-6 subprogram had selected cost changes in the December 2012 SAR. AEHF Space Vehicles 5-6 – Subprogram costs decreased $510.4 million (-14.6%) from $3,488.2 million to $2,977.8 million, due primarily to a reduced estimate to reflect program efficiencies for production and launch operations for Space Vehicles 5-6 (-$507.1 million). The savings were applied to higher Air Force needs.”

SAR: good news, sort of

April 10/13: FY 2014 Budget. The President releases a proposed budget at last, the latest in modern memory. The Senate and House were already working on budgets in his absence, but the Pentagon’s submission is actually important to proceedings going forward. See ongoing DID coverage.

For AEHF, the 2014 budget continues to reduce annual funding through FY 2017, but the block buy of SV-5 and SV-6 is on track. That budget is $2.59 billion maximum, based on $227 million in FY 2011 for long lead time parts, an unfinalized contract with a $2.199 billion maximum for production and launch, and $164 million for potential Engineering Change Orders (ECOs).

There are a few important changes, beginning with having SV-5 and SV-6 “replace AEHF-1 and AEHF-2 at the end of their useful life,” instead of launching to address the US military’s exploding demand for bandwidth. The program has also extended. Instead of terminating in 2018, the budget suddenly adds advance procurement in FY 2016 – 2017, and a big FY 2018 spike for 2 clones of SV-5/6. AEHF SV-7 and SV-8 are really just placeholders so far, as the USAF works through an Analysis of Alternatives for its Resilient Basis for SATCOM (RBS) in Joint Operations study. The exact nature of the AEHF Follow-On will be informed by the protected MILSATCOM AoA.

Jan 3/13: SV-5/6. Lockheed Martin Space Systems Co., Sunnyvale, CA receives a $1.937 billion contract modification for AEHF Space Vehicle 5 and 6 “Production Launch Operations.” When we add ancillary and long-lead item contracts announced to date, the total so far for SV-5 and SV-6 comes to $2,469.2 million, or about $1.235 billion per satellite:

  • Jan 3/13: $1,936.5 (main)
  • Sept 17/12: $43.0 (crypto)
  • June 25/12: $249.0 (antennas)
  • May 10/12: $13.5 (parts)
  • Dec 5/11: $167.2 (long-lead)
  • Nov 16/11: $60.0 (long-lead)

As noted above, the need for a production line restart created a huge cost increase. Work will be performed in Sunnyvale and El Segundo, CA, and is expected to be complete by Jan 24/22. Note that substantially the same announcement was made on Dec 28/12 (FA8808-12-C-0010).

SV-5 & SV-6 main contract

Satellites FY 2012

AEHF-1 and 2. AEHF-2 launch
(click for video)

Sept 24/12: AEHF-2 ready. The satellite completes its on-orbit testing successfully. Testing began with single-satellite testing, followed by a period of crosslink testing between AEHF-1 and AEHF-2, and culminating with testing in the operational Milstar constellation. USAF.

Sept 17/12: SV-5/6. Lockheed Martin Space Systems in Sunnyvale, CA receives a $43 million contract modification for AEHF SV-6 Crypto Availability KI-54D. Decoded, that means they’ll produce/order and then install the satellite’s “black box” encoding/ decoding module for secure communications.

Work will be performed Camden, NJ and El Segundo, CA (Northrop Grumman, sub-contractor), and is expected to be complete by Oct 16/15 (F04701-02-C-0002, PO 0544).

Aug 10/12: AEHF-2 on-orbit. AEHF-2 arrives at its geostationary orbit test location and altitude. Unlike AEHF-1, this one went smoothly: 4 Liquid Apogee Engine burns to get above the densest Van Allen radiation belts, deployment of the solar arrays, then 47 Hall Current Thruster burns over an 85-day period. Payload activation and about 2 months of on-orbit testing are next. USAF.

June 25/12: SV-5/6. Lockheed Martin in Sunnyvale, CA receives a $249 million firm-fixed-price contract for AEHF SV-5 and SV-6 antennas and flight materials. That kind of hardened bandwidth in space doesn’t come cheap. Work will be performed in Sunnyvale, CA, and will be complete by Nov 1/12 (FA8808-12-C-0010, PO 0001).

May 10/12: SV-5/6. Lockheed Martin Space Systems in Sunnyvale, CA receives a $13.5 million firm-fixed-price contract for Space Vehicle 5/6 production. Specifically, they’ll supply a gimbal mechanism and beam select switch parts.

Discussion with Lockheed Martin confirms that this is for AEHF. Work will be performed in Sunnyvale, CA until Dec 30/13 (FA8808-12-C-0010).

Feb 27/12 – May 4/12: AEHF-2 delivery & launch. Lockheed Martin delivers AEHF-2 to the Air Force on Feb 27/12, after keeping it in storage since the end of 2010. The satellite was scheduled for launch on April 27/12 from Cape Canaveral, using an Atlas V rocket. Encapsulation took place on April 21/12 at the Astrotech Space Operations facility in Titusville, FL, but the launch date slipped to May 4/12.

The launched from Cape Canaveral Air Force Station was successful. AEHF SV-2 will take about 110 days to fly to its final orbit, followed by about 120 days of on-orbit testing, before it is transferred to the 14th Air Force for Satellite Control Authority. USAF | ULA | Lockheed Martin | Dutch MvD [in Dutch].

AEHF-2 launch

Dec 5/11: SV-5/6 lead-in. Lockheed Martin Space Systems Corp. in Sunnyvale, CA receives a $167.2 million firm-fixed-price and cost-plus-incentive-fee contract modification, to buy more AEHF SV-5 & SV-6 long lead time materials. This comes on top of the $60 million Nov 16/11 announcement, and includes the basic long-lead parts for Lockheed Martin’s electronic boxes and core structure, and for Northrop Grumman’s payload. These parts have a 24-week (about 6 month) lead time, and will support the coming SV 5/6 production contract.

Work will be performed in Sunnyvale, CA (F04701-02-C-0002, PO 0528).

Dec 2/11: Support. Lockheed Martin Space Systems Corp. in Sunnyvale, CA receives a $312.2 million cost-plus-incentive-fee contract modification for AEHF satellite program engineering support from Dec 1/11 to Dec 31/14.

Work will be performed at Redondo Beach, CA, and could include “on-orbit anomaly resolution and investigation” (vid. AEHF-1’s tribulations), flight and payload software sustainment after on-orbit tests are done, Networked AEHF System Tested tool sustainment, mission control familiarization, and development test. They’ll also provide hardware, software, training and logistics support, technical order maintenance, system security and information assurance engineering, support for AEHF and Milstar combined constellation integration transition and test activities, coordination with the Milstar O&M contractor, satellite database updates for Milstar and AEHF, and on-site technical support for satellite operations at Schriever AFB, CO, and Vandenberg AFB, CA. The USAF Space and Missile Systems Center’s Military Satellite Communications Systems Directorate in Los Angeles, CA manages the contract (F04701-02-C-0002, PO 0454).

Nov 16/11: SV-5/6 lead-in. Lockheed Martin Space Systems in Sunnyvale, CA received a $60 million firm-fixed-price and cost-plus-award-fee contract modification for AEHF SV-5 & SV-6 long lead time materials. The USAF Space and Missile Systems Center’s Military Satellite Communications Systems Directorate in El Segundo, CA manages the contract (F04701-02-C-002, PO 0525).

Nov 3/11: AEHF-1. The USAF announces that AEHF SV-1 has completed initial activation of its communications payload, and has begun on-orbit testing. This included successful deployment of the payload wings, the Gimbal Dish antennas, and the Advanced Anti-Jam Nulling antennas, as well as log-ons and data communications using communication terminals located at Schriever AFB, CO, and M.I.T/Lincoln Labs, MA.

A combined team of Air Force, Aerospace Corp., Lockheed Martin, and Northrop Grumman personnel have worked on activation, and SMC MILSATCOM Systems Director Dave Madden believes that by the end of November, they’ll have enough data to make a decision on whether or not to launch AEHF SV-2 in April 2012.

Oct 25/11: The USAF announces that AEHF-1 has finally reached its designated orbital slot, 14 months after launch. The process required approximately 500 thruster burns, but they still expect to get the required 14 years of mission life from the satellite, even though onboard fuel is directly correlated with mission life. Other US satellites have lasted longer than expected in orbit, so it’s hard to evaluate the USAF’s expectation without knowing the before/after confidence intervals, safety margins, etc. Time will tell.

The next step is a 4-month detailed test and checkout phase of all spacecraft systems, which is actually the most critical on-orbit phase. If the satellite’s other systems are performing as expected, the Space and Missile Systems Center plans to transfer satellite command authority to USAF Space Command’s 14th Air Force in early 2012. USAF.

Huge save: AEHF-1 makes it!

Oct 4/11: AEHF-1. The Space & Missile systems Center at Los Angeles AFB says that AEHF-1 is going to be a bit late to its orbital slot. It will arrive in late October instead of today, “while maintaining the safety of the vehicle and conserving on-board fuel.” Burning the Hall Current Thrusters to make up for the Liquid Apogee engine’s problems has a price, as fuel is the main determinant of satellite lifespan in orbit. The MILSATCOM Systems Directorate says that when they achieve the desired orbit, AEHF-1 will maintain the same expected capabilities they were estimating back in June.

Satellites FY 2011

AEHF-1 not where it should be. SV-4. Cost increases; layoffs. AEHF-1 recovery award
(click for video)

Sept 30/11: Support. Lockheed Martin Space Systems Corp. in Sunnyvale, CA received a $9.8 million cost plus award fee contract modification to extend AEHF sustaining engineering support by 2 more months, from Sept 30/11 through Nov 20/11. Support is provided for MilStar and AEHF satellite operations at Schriever Air Force Base, CO and Vandenberg Air Force Base, CA, and includes on-orbit anomaly resolution and investigation, flight and payload software sustainment, Networked AEHF System Tested Tool sustainment, support for mission control segment Increment 5 familiarization and development test, mission control segment Increments 4 and 5 software maintenance, and on-site technical support.

The USAF Missile Systems Center Military Satellite Communications Systems Directorate in El Segundo, CA manages the contract (F04701-02-C-0002, PO 0519).

June 14/11: Layoffs. Layoffs at Lockheed Martin Space Systems. This branch of the firm employs around 16,000 employees in 12 states, but intends to shed 1,200 employees by year-end, including a 25% cut in middle management to reduce impacts elsewhere. LMSS’ Sunnyvale, CA; Pennsylvania; and Denver, CO sites will be hardest hit, and the firm’s release says that it’s pushed in part by several of their major programs moving beyond the labor-intensive development phase.

Space Systems says it will offer “eligible” salaried employees an opportunity for a voluntary layoff, plus career transition support for all affected employees. Lockheed Martin.

Layoffs

June 13/11: Studies. Lockheed Martin Space Systems in Sunnyvale, CA receives a $17.7 million cost-plus-award-fee contract modification, extending AEHF’s capabilities insertion study. As Lockheed Martin’s engineers contemplate ways to improve future AEHF satellites and meet growing military bandwidth needs, they will be performing capability/requirements tradeoffs for systems, technology assessments, development of design alternatives, risk assessments, and cost and schedule analysis (F04701-02-C-0002, PO 0500).

May 9/11: Changes. Lockheed Martin Corp. in Sunnyvale, CA receives a $21.3 million cost-plus-award-fee contract modification to develop AEHF program software changes in 3 areas. Absent further specifics, the award has been placed in this section.

Work will be performed in Sunnyvale, CA, and King of Prussia, PA. At this point, $19 million has been committed by the USAF Space and Missiles Center, SMC/PKJ in El Segundo, CA (F04701-02-C-0002, P00483).

April 15/11: The Pentagon’s Selected Acquisitions Report ending Dec 30/10 includes the “significant cost changes” in AEHF program – both satellites and terminals. The satellite section reads:

“Program costs increased $1,065.1 million (+8.6 percent) from $12,448.9 million to $13,514.0 million, due primarily to a revised procurement estimate to fully fund the fifth and sixth satellites (+$1,620.7 million) and an extension of interim contract support due to the launch delay for the first satellite (+214.5 million). These increases are partially offset by an estimating decrease due to an acquisition strategy change from full funding to a block buy for the fifth and sixth satellites (-$798.5 million).”

SAR – cost increases

April 7/11: AEHF-1. The USAF’s Space and Missile systems Center provides an update on AEHF-1 progress, as they work to move it into an operational orbit after it fell short upon launch. Today, AEHF-1 crosses the 20,000 km/ 12,427 mile perigee mark.

SMC says orbit-raising is successfully continuing as planned. Phases 1 & 2 using hydrazine thruster phase are complete, and the satellite is now using its AEHF’s Hall Current Thruster electric propulsion system. The goal is to reach geosynchronous orbit in late summer 2011. If they do, it would cap as remarkable effort, and a very nice recovery for the joint government and contractor team. On the other hand, fuel reserves are the #1 determinant of how long a geosynchronous satellite can remain effective, and AEHF-1’s fuel reserves will be much lower than planned. See also Nov 16/10 entry for more details. USAF SMC (no URL).

March 22/11: AEHF-1. AEHF-1 crosses the half-way mark to geosynchronous orbit, with its perigee climbing above 17,893 km/ 11,174 miles altitude. USAF SMC (no URL).

Dec 15/10: SV-4. Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $1.31 billion contract modification for SV4, the 4th AEHF satellite, SV4 unique systems engineering, a system level factory test, system database management functions, systems level support equipment, and program management. At this time, $1.236 billion has been obligated (FO4701-02-C-0002; PO0448).

See also Sept 10/09 and July 18/06 entries, which raise total SV-4 contracts to $1.604 billion. USAF release.

SV-4 main contract

Dec 14/10: AEHF-1. In response to questions about AEHF-1’s orbital problems, the USAF Space and Missile Systems Center says they’ve briefed senior Air Force leaders, who are considering initiating a Safety Investigation Board. They will also present their investigation briefing to selected Congressional Staff Members later in December 2010. Based on the current costs for AEHF-1/2/3, the unit cost per satellite is about $1.7 billion, and the USAF is reviewing its options concerning contractor financial responsibility and/or penalties.

Under current plans, AEHF-1 is looking at a 9-month delay, reaching its test/check-out orbit on Aug 11/11, instead of Nov 10/10.

Nov 16/10: AEHF-1 may have launched successfully, but a propulsion system problem prevented a series of 3 liquid apogee engine burns, so it didn’t reach its operational mission orbit. Los Angeles AFB discusses the new plan to fix this, which involves 4 major stages:

The 1st Parking Burns stage used 3 of the 6 reaction engine assemblies, or REAs, to quickly raise the perigee altitude to reduce drag and attitude disturbances. The 5 pound thrusters brought the orbit to a perigee altitude of 1,156 km and an inclination of 19.9 degrees on Sept 7/10. Apogee altitude remained at 50,000 km, per plan.

The 2nd stage was a series of 6 REA Apogee Burns, to more efficiently raise the perigee path to 4,712 km, and lower inclination to 15 degrees. It was completed on Sept 22/10.

The 3rd stage involves firing 2 high-efficiency hall current thrusters (HCTs), for as long as 12 hours around the apogee altitude. These burns will continue every orbit, centered on apogee, and this stage is planned to last between 7-9 months. It began on Oct 20/10, with a 9 hour burn during AEHF-1’s 100th apogee. Meanwhile, the satellite has managed to deploy its solar arrays, and pass operational readiness checkouts.

The 4th and final stage will require a near-continuous firing of the HCTs to adjust to the final mission orbit, lasting about 3 months. Los Angeles AFB.

AEHF-1: We have a problem

Nov 9/10: Support Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $49 million contract modification for AEHF sustainment engineering support from Oct 1/10 to Sept 30/11. At this point, $9 million has been committed by the AFSMC/MCSQ in El Segundo, CA (F04701-02-C-002; P00427).

Oct 28/10: Testing. Lockheed Martin announces the end of Intersegment System Testing (IST) for the 2nd AEHF satellite in Sunnyvale, CA, completing pre-launch verification for the new eXtended Data Rate (XDR) high-bandwidth service. XDR offers a 10-fold increase in system capacity, coverage and network connectivity, allowing applications such as real-time video, and voice and data conferencing. Completion of IST for AEHF-2 caps an extensive suite of interoperability tests with new XDR-capable user terminals, which demonstrating protected anti-jam communications at data rates up to 8 Mbps using agile satellite spot beams.

The 2nd AEHF satellite has completed all testing, and will be placed in storage in November 2010. The 3rd AEHF satellite is currently progressing through thermal vacuum environmental testing at the Lockheed Martin facility in Sunnyvale, CA.

Satellites FY 2010

AEHF-1 AEHF-1 highlights
(click for video)

Aug 16/10: Studies Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $16 million contract to study AEHF enhancement options, and all funds have already been committed. With the demise of AEHF’s T-SAT successor, AEHF enhancements become a critical opportunity for the bandwidth-constrained US military (F04701-02-C-0002, P00443).

Aug 14/10: SV-1. The USAF’s 45th Space Wing launches AEHF-1 from Pad 41 in Cape Canaveral, FL, on board a United Launch Alliance Atlas V rocket. USAF | Dutch MvD | ULA | Lockheed Martin | Florida Today, incl. video | Spaceflight Now.

AEHF-1 launch

August 10/10: SV-1. AEHF-1 is encapsulated into the Atlas V rocket. The launch has been delayed again, until Aug 14/10.

July 16/10: SV-1. Los Angeles AFB announces that, the Lockheed-Martin/Air Force AEHF team has continued a long-standing tradition, and signed a piece of the flight thermal blanket for the AEHF-1 satellite in preparation for launch. The satellite was shipped on May 24/10, and is currently at Cape Canaveral Air Force Station, FL being readied for launch.

July 14/10: SV-1 launch slips. The USAF announces that:

“The Atlas V launch of the first Advanced Extremely High Frequency satellite from SLC-41 at the cape has been delayed 10 days from 30 July to 10 August. This delay was necessary to provide engineers more time to perform confidence testing on a launch vehicle component associated with releasing the fairing support structure. Processing on both the launch vehicle and satellite continues nominally to a new launch date of 10 August. This slip in the AEHF-1 launch is not expected to impact other launches in the manifest.”

See USAF | Lockheed Martin | United Launch Alliance | Florida Today, incl. video | Spaceflight Now.

May 25/10: SV-1. Lockheed Martin delivers the 1st new AEHF secure broadband communications satellite (SV-1) to the USAF, for a planned July 30/10 liftoff.

As of this date, Lockheed martin says that SV-2 has completed Final Integrated System Test, and is now preparing for Intersegment testing. SV-3 has now completed acoustic testing. Lockheed Martin.

AEHF-1 delivered.

April 14/10: Testing. Lockheed Martin announces that it has completed all factory testing of the first AEHF satellite, which means it’s ready for delivery to Cape Canaveral Air Force Station, FL for a September 2010 liftoff aboard an Atlas V rocket.

The 2nd AEHF satellite (SV-2) is in the midst of its final performance test known as Final Integrated System Test which will verify all spacecraft interfaces, demonstrate full functionality and evaluate satellite performance. The 3rd AEHF satellite, SV-3, is gearing up for acoustic testing.

April 1/10: The Pentagon releases its April 2010 Selected Acquisitions Report, covering major program changes up to December 2009. AEHF makes the list, owing to procurement shifts in the wake of TSAT’s cancellation:

“Program costs increased $2,510.3 million (+25.3%) from $9,938.6 million to $12,448.9 million, due primarily to a quantity increase of two satellites from four to six satellites (+$2,623.7 million). This increase was partially offset by decreases due to an adjustment to the cost estimate (-$20.0 million), Congressional general reductions (-$19.2 million), a contractor to civilian personnel conversion (-$11.8 million), and the application of revised escalation indices (-$53.9 million).”

SAR – to 6 satellites

March 30/10: GAO Report. The US GAO audit office delivers its 8th annual “Defense Acquisitions: Assessments of Selected Weapon Programs report. With respect to the AEHF, it’s a bit behind the curve in listing only 4 satellites in the program for its figures, but it does acknowledge them in its commentary. Excerpts include:

“The AEHF program has overcome the technical problems that have delayed the first satellite’s launch by almost 2 years and increased the cost of the program. Defective satellite parts were replaced and the satellite successfully completed system-level environmental testing… Three satellites have been added to the program in recent years… The cost of the fourth satellite is significantly more than the estimated $952 million (then-year dollars) cost of the third satellite because there is an estimated 4-year break in production and some electronics components are no longer manufactured. Program officials do not anticipate significant technical challenges, but integrating, testing, and requalifying the new components will require time and money… design specifications for the first three satellites will remain unchanged for satellites four through six, which will be clones except for obsolete parts. The program office estimates the cost of satellites five and six will be about $1.6 billion and $1.7 billion (then-year dollars), respectively, with estimated launch dates in 2018 and 2020.”

Oct 7/09: Studies. Lockheed Martin Space Systems in Sunnyvale, CA received a $21.6 million contract for AEHF satellites that will perform a 50% design adequacy assessment for the mission control segment and continue preparation for the preliminary design review as well as study the impacts on strategic command requirements. At this time, $4 million has been obligated (F04701-02-C-0002, P00383).

Satellites FY 2009

Beyond TSAT.

Sept 17/09: No TSAT. What Now? During a media roundtable with USAF Space Command’s Space and Missile Systems Center Commander, Lt. Gen. Tom Sheridan, he explains the way forward in the absence of TSAT. AEHF-4 and WGS F5/F6 have been added, but that will not make up the gap in space-based bandwidth. Meanwhile, the need for high bandwidth anywhere is exploding, thanks to the skyrocketing number of UAVs and other surveillance and/or remotely-operated platforms.

Efforts are now underway to look at the overall gap created by TSAT’s removal, determine the military’s overall priorities among military wideband (WGS), hardened (AEHF), or other bandwidth options, and figure out how that gap might be covered a piece at a time. New solutions will be an option, and so will the possibility of adding new technologies to existing platforms like AEHF.

If this doesn’t sound like a firm plan, it’s because there isn’t one yet. The current foci involve figuring out customer priorities, and finding near-term funding that would retain a number of TSAT personnel and engineers. Success in retaining these people is expected to ensure that they can bring their experience with next-generation technologies to help generate new options, and then analyze alternatives.

TSAT dead – long live AEHF!

Sept 14/09: Training. Lockheed Martin Corp. in Sunnyvale, CA received a $6.1 million contract to develop training material for increment 7, train the trainer for subject matter experts at Fort Gordon, and train international partners for the Advanced Extremely High Frequency Satellite program. At this time, $324,048 has been committed by the SMC/PKA in El Segundo, CA (F04701-02-C0002, P00353).

Sept 10/09: SV-4. Lockheed Martin Space Systems Company receives a $22 million contract for advance procurement of long-lead parts for AEHF Satellite Vehicle 4. At this time, $11 million has been committed (F04701-02-C-0002, P00379).

Sept 10/09: SV-1. Lockheed Martin announces that AEHF-1 has entered final testing at the company’s Sunnyvale, CA facilities, following successful completion of all spacecraft environmental testing. The Lockheed Martin-led team is now executing the final integrated spacecraft and system test procedures necessary to prepare the vehicle for flight. Over a 75-day period, the satellite will go through a series of factory tests to verify all spacecraft interfaces, demonstrate full functionality and evaluate satellite performance.

AEHF-1 was originally scheduled for launch in 2007, but the current release sets the bar for delivery at early 2010, and launch at an unspecified time in 2010. The 2nd and 3rd AEHF satellites are also progressing through final integration and test activities, and are currently on track for launch in 2011 and 2012 respectively.

March 31/09: GAO Report. American GAO auditors look at the AEHF program, as part of their 7th annual “Defense Acquisitions: Assessments of Selected Weapon Programs” report:

“For the second straight year, technical problems with satellite components resulted in a delay of the first launch. This latest delay is almost 2 years. Further, the program office estimates that the fourth AEHF satellite could cost more than twice the third satellite because some components that are no longer manufactured will have to be replaced and production will have to be restarted after a 4-year gap…

During system-level environmental testing of the first satellite, the program office identified six components with workmanship or design problems. Five of these components will need to be removed from the spacecraft for repair, and one will need a software fix. Once all components are repaired and reinstalled, the spacecraft will undergo environmental testing a second time to assure all components are working properly. Continued problems with integration and testing have led to additional schedule delays. The launch of the first satellite has slipped almost two years – from November 2008 to as late as September 2010. The launch of the second satellite was delayed from August 2009 to around June 2011, and the third satellite is now planned for launch in 2012. Due to these delays, initial operational capability has slipped 3 years – from 2010 to 2013.”

Feb 27/09: SV-4 lead-in. Lockheed Martin Space Systems in Sunnyvale, CA receives for $175 million for “the congressionally mandated advance procurement of long-lead parts in FY08 and FY09 for the Advanced Extremely High Frequency Satellite Vehicle four.” At this time $104.5 million has been committed (F04701-02-C-0002, POO347).

See also the $119.2 million July 18/06 contract. Each contract may not spend its full amount, but issued contracts to date now total $294.2 million.

Feb 27/09: Sub-contractors. Northrop Grumman delivers the payload module for AEHF-3. They are 22 days early, marking 3 consecutive early deliveries to the Lockheed Martin’s Sunnyvale, CA facilities (2007, 2008, 2009). Their payload module consists of the complete set of processing, routing and control hardware and software that handle the satellite’s communications, including critical features that protect against interception or jamming.

Lockheed Martin now will begin mating the payload module with its A2100 satellite bus and other space vehicle components, to be followed by environmental and acceptance testing of the completed satellite. NGC release.

Dec 30/08: TVAC issues. Lockheed Martin Space Systems in Sunnyvale, CA received a $7.2 million modifications, authorizing Lockheed to perform 2 additional thermal vacuum (TVAC) cycles on the AEHF Space Vehicles 2. As the Dec 16/08 entry notes, AEHF-1 is already facing problems due to TVAC related anomalies.

The US Air Force Space and Missile Systems Center (SMC), Military Satellite Communications Systems Wing at El Segundo, CA manages this contract (F04701-02-C-002, P00343).

Dec 30/08: Studies. Lockheed Martin Space Systems in Sunnyvale, CA received a $9.9 million modification to provide feasibility studies. These studies will center on extending the AEHF system in the Military Satellite Communications Program, which appears to bode ill for the $20+ billion TSAT program that was supposed to surpass AEHF. At this time, all funds have been obligated.

The US Air Force Space and Missile Systems Center (SMC), Military Satellite Communications Systems Wing at El Segundo, CA manages this contract (F04701-02-C-002, P00340).

Dec 16/08: TVAC issues. Lockheed Martin Space Systems Co. in Sunnyvale, CA receives a $252 million Change Order that will implement additional vehicle-level Thermal Vacuum (TVAC) testing for AEHF-1. The DefenseLINK release adds that:

“The first Advanced Extremely High Frequency (AEHF) satellite is undergoing a significant amount of rework on mission critical unit’s dues [sic] to anomalies.”

At this stage, anomalies are very bad news. Additional TVAC testing suggests that the problem affects the satellite’s ability to survive and operate in the vacuum and wildly varying temperatures that a space satellite must endure.

Testing fail forces contract

Nov 17/08: The latest Pentagon Selected Acquisitions Report finds the AEHF program on the announcements list again:

“Program costs increases $2,576.6 million from $5,645.3 million to $9,938.6 million (+35.0%) to reflect cost increases which have resulted in a critical Nunn-McCurdy unit cost breach currently undergoing certification review.”

This is slightly confusing, as the April 2008 announcement set costs at $7.36 billion – rising from $6.42 billion because they had added a 4th AEHF satellite to the program.

SAR – major cost breach

Satellites FY 2008

Cost increases. Antenna test
(click to view full)

Sept 16/08: Sub-contractors. Northrop Grumman Corporation announces that they have integrated all electronic units for AEHF-3’s payload module. The equipment includes approximately 20 electronics units that offer a complete set of radio frequency, processing, routing and control hardware, plus approximately 500,000 lines of software code.

NGC is currently under contract to provide 3 communications payloads to AEHF prime contractor Lockheed Martin in Sunnyvale, CA, and has delivered the first 2 on or ahead of schedule. This integration with Lockheed Martin’s A2100 satellite bus leaves the firm on track to maintain that record.

July 18/06: SV-4 lead-in. A $119.2 million modification to a cost plus award fee, cost-plus fixed-fee, cost-plus incentive-fee, firm-fixed-price contract with Lockheed Martin Space Systems Corp. of Sunnyvale, CA (F04701-02-C-0002, P00315). The modification covers long-lead parts for the 4th AEHF Satellite, and is an unfinalized contract whose exact numbers will be adjusted later. At this time $59.6 million has been committed.

April 7/08: Cost increases for the AEHF satellite and FAB-T terminal programs land them both on the Pentagon’s latest Selected Acquisition Reports release. The total increase is about 14.5% for the program as a whole, but the biggest increase is easy to understand – they added a satellite:

“[AEHF] Program costs increased $940.5 million (+14.6 percent) from $6,421.5 million to $7,362.0 million, due primarily to a quantity increase of one satellite from three to four satellites (+$946.0 million). Congress appropriated advance procurement for Space Vehicle 4 (SV-4) in the fiscal 2008 Appropriations Act. The Department added SV-4 Full Procurement in fiscal 2010, with a launch capability targeted in fiscal 2014.”

SAR – to 4 satellites

Feb 28/08: Testing. Lockheed Martin announces successful acoustic testing of the first Advanced Extremely High Frequency (AEHF) military communications satellite at its Space Systems facilities in Sunnyvale, CA. This test is designed to duplicate the sound and vibration levels expected during launch into orbit.

Lockheed Martin Space Systems and payload supplier Northrop Grumman Space Technology can now proceed with thermal vacuum testing, which tests performance in the enormously wide temperature extremes found in space. AEHF-1 will be shipped to the Air Force in late 2008 in preparation for launch aboard an Atlas V launch vehicle.

Satellites FY 2007

AEHF-1 meets EEVL. P&P integration
(click to view full)

June 18/07: Lockheed Martin announces that it has successfully integrated the AEHF’s spacecraft propulsion core structure and the payload module. The core structure contains the integrated propulsion system as well as panels and other components that serve as the structural foundation of the satellite. The payload module consists of spacecraft electronics as well as the complete set of payload processing, routing and control hardware and software that perform the satellite’s communications function.

The successful integration allows the team of Lockheed Martin Space Systems in Sunnyvale, CA and payload supplier Northrop Grumman Space Technology in Redondo Beach, CA to begin system level environmental and acceptance testing in preparation for launch in mid-2008. Lockheed Martin release.

June 1/07: Sub-contractors. Raytheon Co in Marlborough, MA received a $27.1 million3 firm-fixed-price contract for production, test, and delivery of 9 Extremely High Frequency (EHF) Satellite Communications Follow-On Terminal Communication Groups P/N: G752718-2 and 17 ship Antenna Groups P/N: G674898-1 (seven Radar Reducing Cross Section and ten Non-RRCS variants). This contract includes an option which, if exercised, would bring the cumulative value of this contract to $38.3 million.

Work will be performed in Largo, FL (61.8%); Marlborough, MA (36.8%); and Saint Pete, FL (1.4%), and is expected to be complete by May 2009. This contract was not competitively procured; it was synopsized as a sole source procurement via the Space and Naval Warfare Systems Command E-commerce web site on July 5, 2006. The Space and Naval Warfare Systems Command, San Diego, CA issued the contract (N00039-07-C-0001).

Feb 28/07: Lockheed Martin Corp. in Littleton, CO received a $108 million firm-fixed-price contract to launch AEHF-1 using an Atlas V Launch Vehicle under the Evolved Expendable Launch Vehicle (EELV) program. At this time, total funds have been obligated and work will be complete February 2009. The Headquarters Space and Missile Systems Center at Los Angeles Air Force Base, CA issued the contract (FA8816-06-C0004).

AEHF-1 launch contract

Dec 28/06: SV-1. Lockheed Martin Corp. Space Systems in Sunnyvale, CA received a $7.8 million cost-plus-award-fee contract modification for the use of a commercial payload processing facility to test, integrate, and fuel the Advanced Extremely High Frequency satellite in preparation for launch. This modification replaces the use of a government facility with a commercial facility that meets program requirements for floor space sufficient to support simultaneous mechanical and electrical launch processing operations. At this time, $1 million has been obligated. The Headquarters Military Satellite Communications Systems Wing at Los Angeles Air Force Base, CA issued the contract (F04701-02-C-0002/P00214).

Dec 22/06: SV-3. Lockheed Martin announces that it has delivered the flight structure for the 3rd AEHF satellite ahead of schedule. The flight structure, which is based on the A2100 geosynchronous spacecraft, will now be sent to Lockheed’s Mississippi facility for integration with its propulsion subsystem.

Over the next several months, a team of engineers and technicians at Lockheed Martin’s Mississippi Space & Technology Center, an advanced propulsion, thermal, and metrology facility located at the John C. Stennis Space Center, will integrate the spacecraft’s propulsion subsystem, which is essential for maneuvering the satellite during transfer orbit to its final location as well as conducting on-orbit operations and repositioning maneuvers throughout its mission life. See Lockheed Martin release.

Oct 19/06: Crypto. Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $7.7 million cost-plus-award fee contract modification. This undefinitized contract action involves integration of the NSA-developed top secret key translation element into the AEHF system, and authorizes Lockheed Martin to start working the system design and test program changes required. The modification will develop, test and integrate the required hardware/software in to the AEHF mission control segment.

At this time, $4.5 million has been obligated. This work will be complete June 2019. The Headquarters Military Satellite Communications Systems Wing, Los Angeles Air Force Base, CA issued the contract (F04701-02-C-0002/P00212).

Oct 4/06: Changes. Lockheed Martin Space and Missiles in Sunnyvale, CA received a $7.6 million cost-plus-award fee contract modification for software and hardware changes to the Advanced Extremely High Frequency (AEHF) satellite system. The changes are necessary to develop and maintain backward compatibility with the predecessor Milstar communications satellite system, and are part of a series of modifications necessary to ensure this compatibility. The Headquarters Military Satellite Communications Systems Wing at Los Angeles Air Force Base, CA issued the contract (F04701-02-C-0002/A00013).

Satellites FY 2004 – 2006

Schedule slip. AEHF-1, 3. AEHF model test
(click to view full)

April 19/06: Testing. Lockheed martin engineers perform a successful modal survey for AEHF. It is designed to ensure that launch and other sources of vibrations such as reaction wheels, solar arrays and various deployable and steerable mechanisms will not affect the critical mission of the communications payload. The successful test was performed by a team of engineers at Lockheed Martin Space Systems, facilities in Sunnyvale, Calif. and included 292 accelerometers, 508 accelerometer channels and six shakers mounted to the structure and surrounding ground surface. Lockheed Martin release.

April 14/06: Lockheed Martin, Space Systems Co. in Sunnyvale, CA received a $454.9 million cost-plus fixed-fee, cost-plus award-fee contract modification for the implementation of the Advanced Extremely High Frequency (AEHF) Satellite Communication System Program re-plan, which started in late 2004.

The re-plan was necessary due to delayed delivery of government-furnished information assurance products, added payload component testing, and replacement of critical parts that were disqualified for space flight. The effort includes development of emulators, additional testing associated with integrating multiple incremental deliveries, and additional months of non-recurring development. The resulting AEHF first launch date of April 2008 is consistent with the revised Acquisition Program Baseline approved in March 2005. This work will be complete May 2010 (F04701-02-C-0002/P00136).

Major SDD increase

Jan 12/06: SV-3. Lockheed Martin Corp. Space Systems Co. in Sunnyvale, CA received a $491.2 million cost-plus-award-fee, cost-plus-fixed-fee, firm-fixed-price contract modification. This is a modification of the Advanced Extremely High Frequency (AEHF) satellite contract to add satellite vehicle #3 (SV3) as envisioned and permitted by a clause in the contract. This action includes the main SV3 contract, and introduces the option for Launch and Operations support.

The Launch and Operations Support option associated with this modification is planned to be exercised beginning in FY 2009 to support an FY 2010 launch, and the acquisition of SV3 will complete the AEHF program of record unless the T-SAT program is deferred or canceled (in which case AEHF SV4 & SV5 will be launched). Work on this contract, which takes the total amount of AEHF expenditures announced on DefenseLINK to $4.276 billion, is expected to be complete in May 2011 (F04701-02-C-0002, P00156).

AEHF-3 contracts

March 7/05: SV-3. Lockheed Martin Corp. in Sunnyvale, CA received a $78.2 million cost-plus award-fee, cost-plus fixed-fee, firm fixed-price contract modification to provide for the advance procurement of long-lead parts for AEHF Satellite Vehicles #3 (SV3) in FY05 (F04701-02-C-0002, P00102).

Dec 21/04: The U.S. Air Force announces that the AEHF program has suffered a 1-year schedule slip, and cost growth of about 20%. The first launch of the 3 planned satellites is now slated for April 2008 rather than 2007 [Source]. In its release, the USAF cites:

“…unavoidable delays and cost growth due to delayed delivery of information-assurance [signal-encryption] products, and the resulting delay of terminals required for satellite command and control… replacement of critical electronic parts and added payload component testing…”

Program slips

Aug 4/04: Spares. Lockheed Martin Corp. Space Systems in Sunnyvale, CA and Northrop Grumman Space Technology in Los Angeles, CA received a $32.55 million cost-plus award-fee contract modification for spare critical components to be used, if necessary, in factory by the contractor during assembly and test and of Advanced Extremely High Frequency (EHF) satellites.

Originally, 5 AEHF satellites were to be built, which ensured that there would be enough spare parts to avoid delays during production because the first satellites could use parts from satellites being assembled later. For this reason, the original AEHF plan did not include production spares. In November 2002, 2 of the Advanced EHF satellites were cancelled and the 3rd satellite was delayed one year, which meant there were no longer adequate numbers of spare critical parts to prevent production delays. Work will be complete by January 2009 (F04701-02-C-0002, P00083).

May 18/04: Crypto. Lockheed Martin Corp Space Systems and Northrop Grumman Space Technology received a $149 million contract modification which incorporates within-scope changes resulting from Revision to the KI-54 Cryptographic Interface Control Document (ICD).

The KI-54 ICD “black box” encryption device was modified by the NSA’s (National Security Agency) contractor, which meant the AEHF team was required to redesign the Host Accessory Logic Application Specific Integrated Circuit (HAL ASIC) in the AEHF communication payload. This effort was captured in Phase 1. In Phase 2, the AEHF contractor team will receive a 4 month program extension to identify and mitigate the risks and modifications to the whole satellite associated with this redesign. Locations of performance are: Lockheed Martin Corp. in Sunnyvale CA (51%) and Northrop Grumman in Los Angeles, CA (49%). This work will be complete in September 2008 (F04701-02-C-0002, P00061).

Dec 22/03: Changes. Lockheed Martin Missiles and Space in Santa Maria, CA received a $15 million cost-plus award-fee contract modification. This technical change will provide two different connection modes to allow MPE to communicate with Army and Air Force terminals and adapt to different terminal and network changes, as Option 5 of an analysis Study that defines Mission Planning Element (MPE) versus Terminal Functionality into the AEHF baseline. This work will be complete by September 2008 (F04701-02-C-0002, P00042).

Satellites FY 2002 – 2003

SDD contract; increase. older AEHF concept
(click to view full)

Aug 8/03: Crypto. Lockheed Martin Corp. in Sunnyvale, CA received a $78.5 million cost-plus award-fee, cost-plus fixed-fee, firm-fixed-price contract modification. It provides for an in-scope change to Incorporate KI-54 Interface Control Document (ICD) Revision F-Phase 2 impacts. The KI-54 ICD is a “black box” encryption device for military communications passing through AEHF. A two-phase approach was initiated to evaluate the KI-54 ICD Revision F changes. Phase I focused on the effort to redesign the HAL ASIC. Phase 2 focused on identifying and mitigating the AEHF system level impacts associated with the HAL ASIC redesign, as defined in Phase 1, such that the 4-month HAL ASIC PDR slip will not result in a launch delay. This work will be complete by September 2008 (F04701-02-C-0002, P00046).

July 23/03: Changes. Lockheed Martin Corp. Space Systems in Sunnyvale, CA and Northrop Grumman Space Technology in Los Angeles, CA received a $16 million contract modification for the following:

(1) Provide capability to assign any single uplink transmission security (TRANSEC) key to any beam;
(2) Provide capability to blank 2nd key contiguous bandwidth within any one permute group in multiples of wideband channels for every hope of the date frame. The blanking timing error shall be factory selectable and upload able from mission control segment (MCS);
(3) Allow extra high data rate users to acquire high gain earth coverage, reposition medium resolution coverage area (beam shared and full-time) and high-resolution coverage area beams without using super high gain earth coverage (SHGEC) uplink resources;
(4) Provide capability for all users to acquire and communicate in the same coverage requests, and the SHGEC which is only used for communications and time tracking terminals acquiring or communicating in any particular beam will do so using only one uplink TRANSEC key that is currently configured to that beam;
(5) Allow for permute group 0 group to support wideband channels.

This work will be complete in September 2008 (F04701-02-C-0002, P00043).

June 13/03: Changes. Lockheed Martin Corp. in Sunnyvale, CA received a $5.2 million contract modification to provide for in-scope changes to modify the Advanced Extremely High Frequency (AEHF) Payload. The technical change ensures backward compatibility with MILSTAR satellite operations. Specifically, it will provide users the capability to fence the necessary payload resources to process Rapid Reconfiguration Order Wire (RROW) streams, and the capability to control the fenced RROW XC2 stream processing payload resources as any other fenced resource, including sub-fences and sub-sub-fences, via command and access control protocol. The change will impact multiple specification documents including the Mission Planning Element of the Mission Control Segment, the Configurable Onboard Router in the Digital Processing Subsystem and the payload software. This work will be completed in September 2008 (F04701-02-C-0002, P00031).

Payload I&T
(click to view full)

May 27/03: Changes. Lockheed Martin Missiles and Space in Sunnyvale, CA received a $10 million cost-plus-award-fee, cost-plus-fixed-fee, firm-fixed contract modification. This is an in-scope change to redesign the host accessory logic circuit (ASIC) in response to a specification upgrade for the KI-54 cryptographic device. This effort will ensure secure communication capability by providing an improvement to the host accessory ASIC within the AEHF digital processing subsystem. This work will be complete January 2004 (F04701-02-C-0002, P00034).

May 22/03: SDD. Lockheed Martin Space Systems Co. received a $9 million contract modification as an amendment to the existing system development and demonstration (SD&D) contract that was definitized April 15, 2001. The purpose of this amendment is to increase the contract value from $2.63 billion to $2.64 billion. This increase is the result of an engineering change proposal to implement a new AEHF System alternate key management plan (AKMP). The effort is within scope of the existing contract, and is necessitated by requirement/design changes that meet National Security Agency (NSA) security requirements that have been validated by Air Force Space Command. The system keys can’t be produced until the NSA approves the AKMP, and these changes must be implemented to avoid possible impact to the launch schedule. The locations of performance are Lockheed Martin Missiles and Space in Sunnyvale, CA, and TRW Inc. Space and Electronics Group in Redondo Beach, CA. This work will be complete June 2008 (F04701-02-C-0002, P00029).

May 22/03: Lockheed Martin Corp. in Sunnyvale, CA is being awarded a $498 million firm-fixed-price contract modification. This is an amendment to the existing letter contract for the Advanced Extremely High Frequency (AEHF) System Development and Demonstration (SD&D) phase. The purpose of this amendment is to increase the not-to-exceed from $2.698 billion to $3.196 billion, as a result of the FY 2002 appropriation act decrease of $70 million and the loss of $30 million in international partner funding. Also, the not-to-exceed increase includes effort necessitated by the recent revision of the National Security Agency’s KI-54 encryption Interface control document, revision D in the amount of $46 million. This action provides for satellites replacement and upgrade of the associated ground command and control segment, and the necessary sustainment. The period of performance for this effort will span approximately 10 years.

Lockheed Martin Corp. will perform this effort at TRW Inc. Space and Electronics Group in Redondo Beach, Los Angeles, CA (46%), and Lockheed Martin Missiles and Space, Sunnyvale, CA (28%) and other locations (F04701-02-C-0002, P00007).

Major SDD increase

Nov 16/02: The Advanced Extremely High Frequency (AEHF) National Team, comprised of Lockheed Martin in Sunnyvale, CA, and TRW Inc. in Redondo Beach, CA, are being awarded a $2.698 billion (not-to-exceed) firm-fixed-price and cost-plus award fee contract for the System Development and Demonstration (SDD) phase of the AEHF satellite communication system program. This effort includes production of two satellites, plus replacement and upgrade of existing military satellite communication (MILSATCOM) ground command and control segment components to support AEHF and associated sustainment.

Solicitation for this sole source contract began in October 2000, negotiations were completed November 2001, and work will be complete in December 2011. The contractors will perform this effort in Sunnyvale, CA (45%), and Redondo, CA (55%). The Space and Missile Systems Center at Los Angeles Air Force Base, CA issued the contract (F04701-02-C-0002).

AEHF SDD contract: includes AEHF-1 & 2

FAB-T Terminals and Ground Control

FAB-T (Family of Advanced Beyond-line-of-sight Terminals) is designed to provide a family of software-defined radios that use a common open architecture to link to different satellites, and enable information exchange between ground, air and space platforms. It is envisioned as a common terminal for the next generation of High Data Satellite Communications using AEHF, Wideband Gapfiller, and other future satellite systems. Aircraft involved include bombers like the B-2 Spirit stealth bomber and B-52 Stratofortress, specialty platforms like the RC-135 Rivet Joint, E-4 NAOC, E-6 Mercury/TACAMO, et. al., and key UAV types like the RQ-4 Global Hawk and MQ-1/9 Predators.

The FAB-T family includes software-defined radios, antennas and associated user interface hardware that will provide a powerful system capable of hosting a multitude of transmission “waveforms” to accommodate data rates in excess of 300 megabits per second.

FAB-T Increment 1 will begin as a terminal for the AEHF and older Milstar satellite systems.

FAB-T Increment 2 will develop terminals to support Wideband Global SATCOM satellite operations on surveillance aircraft including key UAVs, with other platforms to follow.

Fortunately, FAB-T also is the first survivable Software Communications Architecture (SCA)-compliant communications system. Because its implementation will be software based, rather than hardware based, future upgrades that improve performance or extend the standard can be implemented without the time-consuming and expensive process of disassembling equipment and adding new electronics. These “future proofing” modifications can be made to any SCA-compliant radios if it is deemed necessary, even those outside the AEHF/FAB-T program.

Evolution Toward Competition E-6B Mercury
(click to view full)

While FAB-T was initially a Boeing program, Raytheon steadily won orders for AEHF-compatible terminals from every service, finally displacing Boeing in 2014.

FAB-T was initially a 6-year, $279 million system design and development contract in 2002, and it expanded to become an SDD/EMD and production program worth over $3.6 billion. Program activity was managed by Boeing’s Battle Management/Command, Control and Communications (BMC3) & Strategic Systems business segment in Anaheim, CA with key support from Boeing Satellite Systems of El Segundo, CA. Principal team members at the time included:

  • Boeing (Lead contractor, systems engineering and integration, system and terminal architecture, software development, test and evaluation, integrated logistics support and communications engineering)

  • Harris Corporation’s Government Communications Systems division in Melbourne, FL (integration of terminal and antenna hardware)

  • L-3 Communications’ Communications Systems West division in Salt Lake City, UT (development of the modem processor)

  • Northrop Grumman’s Mission Systems (not specified, but acquired TRW whose Command, Control and Intelligence Division in Fairfax, VA was working on AEHF waveform management)

  • Raytheon (related SMART-T terminals for USA, Canada and the Netherlands)

  • Rockwell Collins’ Government Systems Division (not specified)

  • ViaSat, Inc.’s Communications Systems Group in Carlsbad, CA (communications security module hardware and information security)

In September 2012, the USAF had run out of patience, and gave Raytheon a second crack at things with a limited FAB-T development contract. Raytheon had already managed to win a number of service-specific contracts for AEHF-compatible terminals from various branches of the US military (Army SMART-T, Navy MBT, STRATCOM MMPU) so their own development has been faster and less expensive than Boeing’s by a couple orders of magnitude.

Bu June 2014, Raytheon had become the USAF’s FAB-T CPT supplier as well, displacing Boeing and fielding the 1st set of FAB-T terminals onto command aircraft: the 4 national command post E-4Bs based on the 747, and the 16 E-6B Mercury Block IIs used as STRATCOM mirrors and “Looking Glass” theater command planes.

The USAF has deferred moves to equip its B-2A and B-52H bomber fleets, and its RC-135 Rivet Joint electronic eavesdropping jets. If they decide to go ahead, the contracts will be the subject of new competitions.

FAB-T & Ground Control: Contracts and Key Events FY 2012 – 2014

USAF gets annoyed, funds parallel design efforts; Raytheon wins FAB-T CPT competition, displacing Boeing.

E-4B mission
click for video

Aug 12/14: Raytheon VP and GM for Integrated Communication Systems Scott Whatmough says that they’ll be done FAB-T CPT testing by the end of 2014 (q.v. June 2/14). He adds that the B-2A Spirit stealth bomber would be a particularly challenging future addition, as its antennas are different from the B-52H or RC-135. Furthermore:

“It was a classified program when it was being developed and they came up with a very unique mechanical packaging concept for all of their electronics. Turns out no other aircraft ever adopted it, so it has a unique mechanical packaging.”

Sources: C4ISR & Networks, “Raytheon: FAB-T qualification testing done by year’s end”.

June 2/14: FAB-T contract. Raytheon in Marlborough, MA receives a $298 million firm-fixed-price and cost-plus-fixed-fee contract modification for 84 FAB-T Command Post Terminals (CPT), which will equip E-4B NAOC and E-6B Mercury Block II command post aircraft, as well as some ground and mobile locations. After FAB-T reaches Milestone C, Phase 2 production contract options for Low-Rate Initial Production and beyond will open up for Raytheon, expanding the contract considerably.

It’s a sharp blow to Boeing, but not entirely unexpected. On the other hand, it’s not the absolute end. Buying FAB-T terminals for USAF B-2 and B-52 bombers, RC-135 SIGINT/ELINT aircraft, or other planes, would require another procurement process.

Work will be performed in Marlborough, MA and Largo, FL, with the Florida location serving as the assembly point. USAF FY 2013 through 2019 budgets will fund FAB-T buys over time, with just $31,274 committed immediately. Two bids were solicited and two received. The USAF Life Cycle Management Center/HNSK at Hanscom AFB, MA, solicited 2 bids, and received 2 (FA8705-13-C-0005, PO 0002). Sources: Pentagon DefenseLINK | Raytheon, “Raytheon awarded $298 million for US Air Force FAB-T satellite terminal program” | Defense News, “Space Fence, FAB-T Awards Show an Emboldened DoD”.

Raytheon wins FAB-T CPT

Jan 28/14: DOT&E Testing Report. The Pentagon releases the FY 2013 Annual Report from its Office of the Director, Operational Test & Evaluation (DOT&E). The AEHF program is included, but the entry isn’t long and focuses on Mission Control Segment Increment 5 (MCS i5), which controls both Milstar and AEHF satellites.

The USAF hasn’t deployed the full AEHF MCS capability, so no conclusions can be drawn until testing is done in 2014. DOT&E did say that MCS i5 demonstrated improved reliability, dependability, and maintainability compared to i4, and was also more secure.

Jan 27/14: FAB-T situation. Raytheon VP of integrated communications systems Scott Whatmough has told reporters that the USAF is expected to award the FAB-T production contract by the end of March 2014. Raytheon is hoping to beat development contract holder Boeing, using its own privately-developed, AEHF-compatible receiver terminal.

The FAB-T program was most recently projected to cost $4.67 billion, a 48-percent increase from the original estimate of $3.17 billion, but the coming production order is expected to include just 84 FAB-T systems instead of the program’s 246. The bomber fleet installations have been put aside, and production systems will only be used in airborne and land-based command posts. Sources: DoD Buzz, “Pentagon May Award FAB-T Contract in March”.

Aug 1/13: Ground System. USAF Space Command accepts Mission Control Segment Increment 5 (MCS i5) for operational use as the Milstar and AEHF ground segment. It can support Low Data Rate and Medium Data Rate communications over a combined constellation of Milstar and AEHF satellites, and high-bandwidth Extended Data Rate (XDR) for command and control and some tactical communications. Sources: Pentagon DOT&E FY 2013 Annual Report.

July 1/13: FAB-T competition. Raytheon Network Centric Systems in Marlborough, MA receives a $34 million contract modification to continued development and testing of air (E-4B, E-6) and ground fixed and transportable command post terminals with presidential and national voice conferencing. The systems are a parallel project award under the Family of Advanced Beyond line-of-sight Terminals (FAB-T) program – q.v. June 19/13 and Sept 10/12 entries.

Work will be performed at Marlborough, MA, and is expected to be complete by October 2013. Fiscal 2012 Research and Development funds are being obligated at time of award. Air Force Life Cycle Management Center/HNSK, Hanscom Air Force Base, MA manages the contract (FA8307-12-C-0013, PO 0013).

June 19/13: FAB-T situation. Aviation Week reports progress on Raytheon’s competing FAB-T development contract (q.v. Sept 10/12).

Next month, Raytheon plans to complete work, including delivery of developmental terminal models for the E-4B and E-6B command post aircraft, and Presidential voice communications. The firm has just completed a critical design review (CDR), and an October 2013 test will involve satellite communications. The goal is a production-ready system by September 2014, and they’re basing their work on related AEHF-compatible wins like the US Army’s SMART-T (q.v. Oct 4/12), US Navy’s Multiband Terminal (MBT), and the USAF’s Minuteman Minimum Essential Emergency Communications Network Program Upgrade (MMPU, q.v. Dec 30/11).

Boeing hasn’t stopped working. Their CDR took place in 2012, and they’re now in the final stages of system level functional qualification. Demonstrations have taken place with AEHF and Milstar control systems, and flight tests are scheduled for this summer. Beyond FAB-T, one imagines that Boeing would like to win the upcoming Global Aircrew Strategic Network Terminal (GASNT) competition. Of course, so would Raytheon. Aviation Week.

Oct 4/12: SMART-T. Raytheon in Marlborough, MA receives a $164 million firm-fixed-price contract to create AEHF secure, mobile, anti-jam, reliable, tactical (SMART-T) terminals.

FAB-T isn’t the only game in town when it comes to AEHF-compatible terminals for sending and receiving data, and this is one of several service-specific contracts for AEHF-compatible terminals that don’t need all of FAB-T’s functionality, but may need other capabilities. See also Sept 19/11 entry.

Work location will be determined with each order, with an estimated completion date of Sept 28/15. The bid was solicited through the internet, with 1 bid received by U.S. Army Contracting Command in Fort Monmouth, NJ (W15P7T-12-D-0071).

Sept 10/12: FAB-T competition. About 10 years after losing the FAB-T contract, Raytheon Network Centric Systems in Marlborough, MA receives a $70 million firm fixed price contract for development, testing and production of FAB-T engineering development models of air (E-4B NAOC, E-6B TACAMO), ground fixed and transportable Command Post Terminals with Presidential and National Voice Conferencing (PNVC).

The location of the performance is Marlborough, MA. Work is to be complete by July 2013. The AFLCMC/HSNK at Hanscom AFB, MA manages the contract (FA8307-12-C-0013).

FAB-T becomes competitive

Dec 30/11: STRATCOM MMPU. Raytheon Network Centric Systems in Marlborough, MA receives a $9.4 million cost-plus-award-fee, firm-fixed-price, time-and-materials and cost reimbursement contract to upgrade the Minuteman Minimum Essential Emergency Communications Network Program to support AEHF constellation communications. The LM-30 Minuteman III ICBM is the land-based leg of the US nuclear weapons triad.

Work will be performed in Marlborough, MA, and is expected to be complete 12 months after receipt of order. The USAF ESC/HNSK at Hanscom AFB, MA manages the contract (FA8726-08-C-004, PO 0080).

FY 2010 – 2011

SAR shows program cost growth; Milstar ground control compatibility; Other firms producing AEHF-compatible terminals. Older Milstar II

Sept 19/11: SMART-T. Raytheon announces that they have fielded the first AEHF Secure Mobile Anti-jam Reliable Tactical Terminal (SMART-T) satellite communications solution to the U.S. armed services, using Raytheon’s eXtended Data Rate (XDR) waveform hardware and software modification.

SMART-T is compatible with EHF and AEHF satellites, and AEHF increases the data rate by a factor of 4x. Through 2015, Raytheon will field 364 AEHF SMART-T terminals to the U.S. armed services, 19 systems to Canada, and 7 to the Netherlands.

August 2011: Testing. Boeing successfully demonstrates high-data-rate transmissions between FAB-T and an AEHF test terminal, using the low probability of interception, low probability of detection extended data rate (XDR). XDR will be used for, among other things, nuclear command and control.

The testing covered XDR re-key, XDR text communications, dual FAB-T log-on with the AEHF payload, and interface with the AEHF Satellite Mission Control Subsystem. More than 50% of system integration tests are done, and system qualification testing is due to start in 2012. Note that Boeing’s Oct 3/11 release refers to Paul Geery as its FAB-T VP and program manager.

July 18/11: Testing. Boeing updates progress. The FAB-T EMD program has completed 90% of hardware qualification testing, 97% of all system software through-code and unit testing, and approximately 30% of systems integration and test. Boeing has conducted platform and payload integration testing through over-the-air low-data-rate tests and risk-reduction flight tests, and April 2011’s RC-135 Rivet Joint flight test of a Block 8 terminal was the 2nd in a series of airborne terminal tests, on the 1st operational program to be integrated.

Boeing is working toward the LRIP (low-rate initial production contract) for the Nuclear Command and Control Network Communications System, and completing qualification of the Block 8 third-generation hardware and high-data-rate waveform software. John Lunardi is currently Boeing’s FAB-T vice president and program director.

April 15/11: The Pentagon’s Selected Acquisitions Report ending Dec 30/10 includes the “significant cost changes” in AEHF program – both satellites and terminals. The FAB-T section reads:

“Program costs increased $630.9 million (+15.8 percent) from $3,981.9 million to $4,612.8 million, due primarily to complexities with software integration and challenges with hardware qualification (+$260.1 million), higher manufacturing costs due to loss of learning and production inefficiencies (+$258.9 million), and other increases due to the schedule stretch-out (+$134.7 million), partially offset by decreases in other support costs (-$32.7 million).”

SAR – cost increases

April 6/11: SDD. Boeing in Huntington Beach, CA receives a $271.2 million cost-plus-award-fee contract modification. It covers “the new estimated cost completion” amount for FAB-T’s System Development and Demonstration, and “provides increment funding aligned with Continuing Resolution authority.”

Work will be performed at Huntington Beach, CA, and Salt Lake City, UT. Hanscom AFB’s Electronic Systems Center, MA manages the contract (F19628-02-C-0048, PO 0219).

Major SDD Increase

Jan 26/11: Testing. A successful demonstration of over-the-air, low-data-rate communication between an orbiting Milstar satellite and the a 3rd generation (Block 8) FAB-T terminal, passing voice and data communication using the FAB-T’s low-data-rate software and its newly developed large aircraft antenna.

The system in question demonstrates why this kind of backward compatibility matters: it’s a Nuclear Command and Control Network Communications System. The team of Boeing, L-3 Communications, Rockwell Collins and ViaSat, Inc. will conduct more terminal integration, software testing and flight testing activities before building this system.

Boeing’s System Integration and Testing Lab in Huntington Beach, CA includes 12 FAB-T systems with connections to 3 antennas, allowing simultaneous over-the-air operation. 2011 will feature in-depth FAB-T system integration tests, now that over 80% of the hardware qualification testing and nearly 65% of the FAB-T software qualification testing is complete. The program is scheduled to enter flight testing in Q1 FY 2013 (fall 2012), and exercise its low rate initial production option in Q3 FY 2013 (summer 2013). USAF.

Oct 6/10: B-52s. Boeing in Wichita, KS received a $12.4 million contract modification for a future beyond line of sight (BLOS) communication capability on the B-52 heavy bomber, using AEHF-compatible BLOS terminals. At this time, $10 million has been committed by the ASC/WWVK at Wright Patterson AFB, OH (FA8107-05-C-0001; PO 0058).

This contract is part of the B-52 CONECT program.

Aug 3/10: AEHF & Milstar. Lockheed Martin announces that a joint company/USAF team has successfully transitioned the Milstar satellite constellation’s ground control system to the new AEHF Mission Control Segment (MCS). The AEHF MCS is now performing day-to-day operation of the USAs existing Milstar satellite constellation, leaving MCS ready to support deployment of AEHF-1 in August 2010. Lockheed Martin.

July 8/10: Integral Systems, Inc. in Columbia, MD receives a $13.4 million contract modification, extending the contract for the command and control system-consolidated (CSS-C) program for a year (from Sept 30/11 – Sept 30/12), due to launch delays on AEHF Space Vehicles 1, 2 and 3. At this time, no money has been committed; this contract just authorizes the funds if needed (F04701-01-C-0012, P00170).

CCS-C has been an overall money-saver for the USAF, migrating tracking, telemetry, and command and control from mainframe systems to cheaper and more flexible commercial client/server computing options. The USAF says that CCS-C sustainment costs are just 25% of the previous Satellite Control Network Command and Control Segment. After a competitive system ‘fly off’, in March 2002 Integral Systems Inc. (ISI) of Columbia, Maryland was awarded the CCS-C development/ sustainment contract. ISI/CCS-C employs approximately 130 people, and operates 2 software development laboratories in Maryland and Colorado.

Jan 4/10: FAB-T changes. Boeing in Huntington Beach, CA received a $34.3 million contract to implement the following changes to the functionality available for the Family of Advanced Beyond Line-of-Sight Terminals Increment 1: Contractor Technical Requirements Document (CTRD) update version 9.2; Simple Key Loader 6.0 interface to data set manager (DSM) for DSM flash control station profiles; and implementation of auto broadcast features on the Extended Data Rate (XDR) capability. At this time, $500,000 has been obligated. The 653 ESW/PK at Hanscom Air Force Base, MA manages the contract (F19628-02-C-0048-P00180).

Dec 1/09: Support. Lockheed Martin Space Systems in Sunnyvale, CA received a $39.5 million contract to provide sustainment for the AEHF satellite ground segment from Dec 1/09 – Sep 30/10 (F04701-02-C-0002, P00399).

Oct 21/09: Canada. Rockwell Collins announces a 5-year, USD$ 52.3 million contract to provide the Canadian Forces with AEHF-compatible Single Channel Anti-jam Manportable (SCAMP XDR-IPV, Extended Data Rate International Partners Variant) terminals. The Foreign Military Sale contract will be executed through the U.S. Army’s Communications-Electronics Command Group (CECOM).

Rockwell Collins’ SCAMP terminals provide worldwide secure, jam-resistant, covert, voice and data communications. They offer communication for a wide variety of applications and users. The terminals feature Extended Data Rate (EDR) capability that delivers data rates comparable to high quality, Digital Subscriber Line (DSL) modems.

SCAMP for Canada

Oct 14/09: Testing. Boeing Launch Services of Huntington Beach, CA received a $21.8 million contract modification to provide engineering development models for the Family of Advanced Beyond-Line-of-Sight Terminals (FAB-T) to allow for operational testing with production representative terminals. FAB-T terminals will connect soldiers or military platforms like planes, ships, et. al. with the AEHF constellation. At this time, $1.3 million has been obligated. The 653 ESW/PK at Hanscom Air Force Base in Massachusetts manages the contract (F19628-02-C-0048, P00171).

FY 2006 – 2009

FAB-T PDR, CDR.

June 26/09: AMACS antenna. Raytheon announces a successful test of their Advanced Multiband Communication Antenna System (AMCAS), developed for the U.S. Air Force. AMCAS is an extremely low-profile antenna that extends only 8 1/2″, and attaches to the aircraft’s metal skin rather than requiring complex in-fuselage installations. That configuration reduces drag, and minimizes time out of service during upgrades.

During the test, the AMCAS antenna communicated with the Milstar satellite’s medium data rate waveform, but it has been developed for use with FAB-T.

Oct 28-30/08: A successful system-wide Critical Design Review (CDR) for the FAB-T family. The Boeing Terminal Test team established log on, downlink, and uplink connections with a Milstar 6 satellite, as a first step toward implementing AEHF’s Extended Data Rate (XDR) waveform.

Formal qualification testing will now take place to validate the terminals’ interoperability and satellite interfaces, and Boeing expects to begin deliveries of engineering development modules to the Air Force in 2009 for FAB-T Increment 1. Flight testing of these modules is currently planned for mid-2009. Boeing release.

FAB-T CDR

Sept 16/08: Testing. Boeing announces that it has delivered its FAB-T Increment 2 prototype to the Massachusetts Institute of Technology’s Lincoln Laboratory in Lexington, MA, ahead of schedule. The lab will use it to continue developing the DVB-S2 based communications waveform.

Waveforms define how radios, satellites, et. al. communicate. The Lincoln Lab’s efforts will define a waveform used for airborne intelligence, surveillance and reconnaissance readout over Ka-band military satellite communications. That waveform can then be incorporated in air, ground, maritime, and space communications equipment as required, as long as they have the required hardware or are software-defined and SCA-compatible.

Sept 4/08: Changes. A $16.7 million cost plus award fee contract modification to Boeing of Anaheim, CA to update new platform requirements and Advanced EHF (AEHF) system interface. At this time, $7 million has been committed by the Air Force Materiel Command,’s Electronic Systems Center, 653d ELSG/PK at Hancom AFB, MA (F19628-02-C-0048, P00146).

July 28/08: Changes. A $53.4 million modification to Boeing in Anaheim, CA, in order to update new platform requirements and FAB-T’s AEHF system interface. The Electronic Systems Center of Air Force Materiel Command manages the contract (F19628-02-C-0048 P00143).

April 9/08: Changes. Boeing received a modified contract for $25 million to incorporate Engineering Change Proposal (ECP) 0035, Strategic Networks, into the Family of Advanced Beyond-Line-of-Sight Terminals (FAB-T) Increment 1 program. At this time $9.25 million has been obligated, and the contract amount will be finalized later. Hanscom AFB, MA issued the contract (F19628-02-C-0048/P00141).

April 7/08: Cost increases for the AEHF satellite and FAB-T terminal programs land them both on the Pentagon’s latest Selected Acquisition Reports release:

“[FAB-T] Program costs increased $454.8 million (+14.4 percent) from $3,167.4 million to $3,622.2 million, due primarily to a revised cost estimate resulting from analysis by the OSD Cost Analysis Improvement Group (+$348.8 million). Costs also increased due to a net quantity increase of 6 terminals from 216 to 222 terminals (+$44.7 million), adjustments in real and predicated escalation (+$26.6 million), an increase in initial spares (+$25.5 million), and a net stretch-out of the procurement buy profile (+$9.2 million).”

SAR – cost increases

Feb 15/08: Changes. Boeing of Anaheim, CA received a contract modification for $49.8 million. This undefinitized contract action to incorporate Engineering Change Proposal 0034, “New Platform Requirements and Advanced EHF System Interface Changes,” into the Family of Advanced Beyond-Line-of-Sight Terminals. At this time $17 million has been obligated. 653 ELSG/PKX at Hanscom Air Force Base, MA issued the contract (F19628-02-C-0048/P00138).

Feb 1/08: Testing. Northrop Grumman Corporation announces that it has demonstrated compatibility between the AEHF military communications satellite with user ground terminals using the new Extended Data Rate (XDR) waveform and protocols. Other future satellite communications programs, including the Transformational Satellite Communications System (TSAT) and the Enhanced Polar System, will also use XDR waveforms.

Earlier testing in May 2006 had already verified the backward compatibility of Advanced EHF with legacy terminals using Low Data Rate (LDR) and Medium Data Rate (MDR) waveforms. This latest demonstration included all 3, as 84 test objectives were demonstrated including links the U.S. Army’s Warfighter Information Network-Tactical terminal (WIN-T), the international variant of the Secure Mobile Anti-Jam Reliable Tactical Terminal (SMART-T), and Lincoln Laboratory’s Advanced Universal System Test Terminal (AUST-T).

Tests were conducted using a U.S. Army user terminal as well as a terminal configuration to be used by international partners, and included participants from the U.S. Air Force Space and Missile Systems Center, Northrop Grumman, the Joint Terminal Engineering Office, Lockheed Martin, the U.S. Army WIN-T program, the Lincoln Laboratory, and Raytheon (terminal manufacturer).

Jan 16/08: STRATCOM. Raytheon Network Centric Systems, Inc. of Marlborough, MA received a contract for $37.5 million. The firm will perform a Minuteman Minimum Essential Emergency Communications Network Program upgrade to support communications via AEHF satellite constellations. To give you an idea of just how serious that is, the Minuteman-III fleet is the USA’s set of land-based nuclear missiles. The upgrade will provide an improved terminal operator control function, add an AEHF and address other system improvement for the MMP. At this time $15.2 million has been obligated. The Electronic Systems Center, AFMC at Eglin Air Force Base, FL issued the contract (FA8726-08-C-0004).

Sept 14/07: Changes. Lockheed Martin Space Systems Corp. of Sunnyvale, Calif. received a contract modification for mission software improvements amounting to $16.9 million. Element 1 covers a change order to modify the Mission Planning Element of the AEHF’s ground software, which models the AEHF’s communication plan, to accurately model and support both current and new AEHF terminals. Element 2 of these modifications will allow the Mission Planning Element to distribute transmission security keys for terminals using the Ultra High Frequency (UFO/ MUOS) Follow-On Enhanced Extremely High Frequency (E/EE) or Interim Polar satellite systems. Finally, 2 increments of the Mission Planning Element software being developed in parallel will be combined to create efficiencies in software development and maintenance.

Taken together, these software improvements will also mitigate the risk of incompatible planning tools between the United States and its International Partners in future coalition operations. At this time $8,470,148 has been obligated.

Sept 4/07: Testing. Boeing announces the first time that its FAB-T system acquires an operational Milstar satellite and completes downlink data transmissions. The Low Data Rate test meets program schedule commitments and lays the foundation for uplink tests and other interoperability assessments later in 2007. The test, conducted from Rockwell Collins’ FAB-T Systems Integration Laboratory, used Boeing, RCI, ViaSat and L-3 Communications integrated hardware and software products. Boeing release.

June 26/07: Changes. Integral Systems, Inc. in Lanham, MD received a $5.8 million cost-plus-award-fee contract modification. It modifies the Command and Control System-Consolidated (CCS-C) effort to support the Wideband Gapfiller Satellite (WGS) Program Operations Readiness, add training, and incorporate changes to the system/Subsystem Specification (SSS) to clarify development requirements for the Advanced Extremely High Frequency (AEHF) satellite program.

The CCS-C program provides an upgraded capability to command and control the Air Force’s communication satellites, including the Defense Satellite Communication System, Milstar, Advanced Extremely High Frequency, and Wideband Gapfiller Satellites (N.B. now also called Wideband Global SATCOM, but this was the language of the US DefenseLINK release). At this time, $2 million has been obligated, and work will be complete in June 2010. The Headquarters Military Satellite Communications Systems Wing in Los Angeles Air Force Base, CA issued the contract (F04701-01-C-0012/P00118).

March 26/07: Recognition. Boeing announces that their joint replan of the FAB-T program in conjunction with U.S. Air Force Space Command has earned the USAF’s Agile Acquisition Transformation Leadership Award. Approximately 300 of the program’s 700-plus requirements were changed, along with detailed schedule re-phasing for development, test, delivery and installation. Boeing claims that the replan delivered new capability, while ensuring that “strategic nuclear command and control connectivity remains uncompromised.”

The award, presented in February 2007 to the Space Command’s FAB-T Alpha Contracting Team at the annual Acquisition Leaders Forum in Atlanta, Ga., recognizes the joint government-industry effort for completing a significant replan of the FAB-T program in a record 10 weeks during the summer of 2006. The award also acknowledges skill in acquisition program management and leadership bringing about acquisition process transformation. Boeing release.

Feb 13-17/07: CDR. Team Boeing successfully completes a an external Critical Design Review (CDR) for FAB-T, paving the way for deliveries to begin. The CDR follows the recent delivery of a Block 4 software-defined radio to the U.S. Air Force, and successful Preliminary Design and Integrated Baseline reviews. Initial FAB-T deliveries will begin in December 2008.

A CDR needs to demonstrate that the program’s requirements are defined and understood to a point that gives the review board confidence in the team’s ability successfully execute a production contract. In this case key requirements included a survivable command and control capability for the next generation AEHF satellite constellation, plus demonstrated compatibility with the Extremely High Frequency Low Data Rate (EHF LDR) waveform, which forms the basis for future Advanced EHF (AEHF) waveforms and block upgrades. SCA-compliant EHF LDR compatibility also provides a base for hosting new waveforms being developed for the T-SAT (Transformational Satellite Communications) program. Boeing release.

Dec 11/06: Sub-contractors. ViaSat, Inc. finalizes a $35 million dollar subcontract modification with Boeing Integrated Defense Systems. This award adds additional technical requirements to the ViaSat FAB-T subcontract, and extends ViaSat product development and support through 2011. See ViaSat press release. To date, ViaSat has completed two major FAB-T program deliveries. Acceptance testing on the Prototype phase is complete and has been delivered to the U.S. Air Force as part of the Boeing team FAB-T terminal delivery. Boeing has also taken delivery of the FAB-T engineering development model hardware and software.

Nov 28/06: Mission planning. Lockheed Martin Space Systems Co. in Sunnyvale, CA received a $51 million cost-plus-award fee contract modification. This modification of the Advanced Extremely High Frequency (AEHF) MILSATCOM Systems Wing contract provides for transition from legacy Milstar ground control and mission planning equipment to new AEHF equipment. This realignment is necessary to account for delays in the delivery of new command post terminals, and the need to reduce the operational impact of the transition. This realignment also includes a program decision to upload the final planned increment of satellite software capability before launch rather than afterward, to avoid an interruption to future operations. The effect of these decisions is to extend the turnover date by 7 months for additional preparation and tests, though the launch date remains unchanged. At this time, $8 million have been obligated. Work will be complete May 2010.

Oct 17/06: Boeing has successfully completed a Preliminary Design Review for the FAB-T program, a key milestone. Attended in Anaheim, CA by more than 150 Boeing, senior government and industry officials, the four-day review included presentations from systems, software and hardware teams. Part of the key criteria were that Boeing and its industry team had to show that they had successfully incorporated schedule and requirement changes that are part of the program’s new baseline. See release.

FAB-T PDR

Sept 27/06: Changes. Boeing Co. C3 Networks in Anaheim, CA received a $465.9 million cost-plus award fee contract modification. This modification will incorporate Engineering Change Proposal 0020 replan into the Family of Advanced Beyond-Line of Sight Terminals (FAB-T) increment 1 program. FAB-T terminals will connect soldiers or military platforms like planes, ships, et. al. with the AEHF constellation. The ECP 0020 replan addresses changes necessary to implement an executable program within cost and schedule objectives that will support AEHF requirements.

Specifically, the replan addresses the following: program overruns; requirements deferrals and accelerations; requirements deletions; pending requirements changes that will enable FAB-T to meet external requirements from concurrently evolving systems e.g., the AEHF payloads; and the INFOSEC module for FAB-1. The replan also includes the option to support government interoperability testing. Work will be complete December 2011. The Headquarters 653d Electronic Systems Wing at Hanscom Air Force Base, MA issued the contract (F19628-02-C-0048/P00095).

NB. The DefenseLINK release adds that “at this time, $1,761,770 have been obligated,” – which makes little sense as it is 4 times larger than the contract award. We’ve asked PA POC Monica Morales at (781) 377-8543 to clarify.

FY 2002 – 2005

SDD contract.

March 10/05: Crypto issues. The NSA (National Security Agency) issued modified handling instructions during development, integration and testing of the FAB-T modem processor group, because of delays in their Cryptographics Verification and Design Verification testing of the ACTS cryptographic devices. In order to comply with the modified ACTS handling guidance, Boeing in Anaheim, CA received a $10.5 million cost-plus award-fee Undefinitized Contract Action (UCA) for Contract Change Proposal (CCP)-0011: ACTS (Security Chip) Handling procedures. This guidance requires physical security and emanation protection of the test facility, and will limit contact with the test equipment to personnel with appropriate clearances. The Headquarters Electronic Systems Center at Hanscom Air Force Base, MA issued the contract (F19628-02-C-0048, P00051), which is expected to end in September 2008.

Dec 21/04: Program slips. The U.S. Air Force announces that the AEHF program has suffered a 1-year schedule slip, and cost growth of about 20%. The first launch of the 3 planned satellites is now slated for April 2008 rather than 2007 [Source]. In its release, the USAF cites:

“…unavoidable delays and cost growth due to delayed delivery of information-assurance [signal-encryption] products, and the resulting delay of terminals required for satellite command and control… replacement of critical electronic parts and added payload component testing…”

Program slips

Dec 8/04: Changes. The Boeing Co. in Anaheim, CA receives a $42.5 million cost-plus award-fee contract modification for Family of Advanced Beyond Line-of-Sight Terminals (FAB-T), ECP 0011: Incorporated of additional Advanced Extremely High Frequency (AEHF) COMSEC/TRANSEC System (ACTS) chip and keying material delays into the FAB-T baseline; and update of FAB-T and AEHF baseline specifications. This contract modification incorporates both the most recent ACTS-related delays and synchronization with the maturing AEHF specifications. These modifications will be incorporated into 16 AEHF Engineering Development Models of terminals for the B-2, B-52, E-4, E-6, and RC-135 aircraft and for ground-fixed and ground-transportable command post terminals. At this time, $10 million has been obligated and work will be complete by September 2008. The Headquarters Electronic Systems Center at Hanscom Air Force Base, MA issued the contract (F19628-02-C-0048, P00040). The DefenseLINK release adds that:

“ACTS chip and ACTS keying material delays have occurred since FAB-T contract F19628-02-C-0048 award, driving schedule delays in both the AEHF and FAB-T schedules. In addition, AEHF system-level and inter-segment specifications have matured through working groups involving the government, Boeing, and the AEHF system contractor team.”

Aug 24/04: Changes. Boeing Co. in Anaheim, CA receives a $20.2 million cost-plus award-fee contract modification to bring FAB-T into line with changes in the AEHF specification. At this time, $2.1 million of the funds have been obligated, and work will be complete by December 2007. The Headquarters Electronic Systems Center at Hanscom Air Force Base, MA issued the contract (F19628-02-C-0048, P00028). The DefenseLINK release openly acknowledges that:

“At the time the FAB-T contract F19628-02-C-0048 was signed, the Advanced Extremely High Frequency (AEHF) specifications referenced in the contract were not complete and/or mature. Since that time, the (AEHF) system design and specifications have been maturing through working groups involving the Government, Boeing and the AEHF system Contract Team…”

Aug 04/04: PDR. The Boeing team announces completion of “a highly successful Preliminary Design Review (PDR) in Anaheim,” which included both systems-level and software reviews. See release.

Sept 24/02: The U.S. Air Force’s Electronic Systems Center (ESC) at Hanscom Air Force Base, MA announced Boeing as the prime contractor for a 6-year, $273 million contract to design and develop the first increment of FAB-T. See release.

SDD contract

April 29/02: The Boeing Space and Communications Family of Advanced Beyond Line-of-Sight Terminals (FAB-T) team announces the delivery of their proposal. Boeing Space and Communications (S&C) is leading one of two industry teams competing for a 6-year, $279 million system design and development contract, which will be managed by the MILSATCOM Terminals Office at Electronic Systems Center, Hanscom Air Force Base, MA.

The proposal submitted by the Boeing team represents the first increment of the multi-phase program, where the winning team will have sole responsibility for a 6-year period of performance upon award in late June 2002. At the time of release, the initial design period is expected to be followed by the low-rate initial production phase in 2007, and the production phase in 2008. The system is expected to be fully operational by 2009. See release.

Additional Readings & Sources

 

Related Ground Systems

 

News & Views

Categories: Defence`s Feeds

Spanish and US defence industry assocations look to collaboration

Jane's Defense News - Fri, 22/05/2015 - 02:00
Spanish and US defence industry associations TEDAE and NDIA have signed a collaboration accord aimed at increasing co-operation and interchange of information between the two. The agreement followed a joint workshop meeting in Washington that was attended by 15 Spanish companies and 70 of their US
Categories: Defence`s Feeds

Spanish and US defence industry associations look to collaboration

Jane's Defense News - Fri, 22/05/2015 - 02:00
Spanish and US defence industry associations TEDAE and NDIA have signed a collaboration accord aimed at increasing co-operation and interchange of information between the two. The agreement followed a joint workshop meeting in Washington that was attended by 15 Spanish companies and 70 of their US
Categories: Defence`s Feeds

Pages