Alors que la généralisation des contrats obligatoires pourrait stimuler le développement du secteur, la plupart des États africains et les principaux assureurs restent frileux.
Szeretnénk egy jó fotót magunkról, de sose sikerül nagyon jól. Nem nehéz, mindenkiről lehet jó fotót készíteni, csak az előnyös arcát kell mutatnia. Van néhány ötlet, hogyan lehet magunkból a legjobbat kihozni.
A megvilágítás mindig legyen optimális. Erre általában a szemből jövő szórt fény a legjobb. Tehát ne háttal álljunk az ablaknak, mert akkor sötétek leszünk. Se oldalról, mert akkor csak az egyik felünk lesz megvilágítva.
Keressük meg az előnyösebb profilunkat, biztosan tudjuk, melyik az. Úgy forduljunk, hogy a képen az látszódjon majd jobban. Próbáljuk meg kicsit felemelni a mobilt, kicsit fentről fotózni, mivel így az arcunk vékonyabbnak fog látszani.
Nem előnyös, ha túl közelről fotózzuk le magunkat, ezért próbáljuk meg kinyújtani a kezünket minél jobban. Vagy állítsunk be időzítőt, ha van az okostelefonunkon. Majd helyezzük a telefont egy magasabb polcra vagy szekrényre.
Ezek mellett nagyon figyeljünk, hol készítjük a fotót. Lehetőleg ne legyen rendetlenség a háttérben. Mivel rettenetes illúzióromboló tud lenni egy bevetetlen ágy, vagy egy fotel, mely tele van szórva ruhákkal. A helyszín legyen letisztult és egyszerű, ez a legjobb.
Mindezekkel, ha már tisztában vagyunk, akkor bátran nekiállhatunk szebbnél szebb fotókat készíteni. De ne feledjük, hogy legyünk önmagunk. Sose mutatkozzunk másnak, se ne sminkeljük túl magunkat. Ne váljunk nevetségessé.
A while ago – I lose track of when – I wrote about something on KoW which I’d clumsily called hypercompetition. I don’t claim anything particularly original about the notion, but I heard it blaring out of my radio last week under the guise of something now called hybrid war.
The problem of the conspiracy theory accusations or difficulties with hypercompetition seem to have been politically overcome with the perception of threat provided by Russia in Ukraine. Prior to this a notion that Russian funding of things of influence might be problematic was bracketed under the heading of ‘conspiracy theory’. Money likes to travel.. and in this globalised world money is colour blind.. let it come from wherever it comes. That sort of thing. And it’s not to pick on the Russian money, certainly not in the way I think about this hybridity or hypercompetition. It strikes me that there is rather a large number of states and significant networks of influence leveraging influence.
There are several underpinning follow-on questions:
1) Is this is a paranoid view of the world? Does it too close to conspiracy theory? Two responses: 1) a wise friend of mine noted that all IR theories are merely a myopia or conspiracy built upon the exponent’s preferences. So, this is merely a dissenting voice. As those mainstream conceptions were when they were mooted.
2) Is Western Europe just really bad at this form of warfare or influence? Following media reportage, it would appear that we’re under siege from many external sources. That we’re the timid supplicant… flotsam bounced around by nasty ‘forren’ types. I’m not convinced we’re bad at the prosecution of this kind of activity – afterall, if 500 years of imperialism hasn’t taught us something we should give up and cower at home. However, we seem very bad at countering it at home. Part of this might be the Bronwen Jones line of the coloniser being eventually colonised, but I think our weakness and vulnerability actually stems from the near universal acceptance of a narrative that, for instance, says that third country investment in our core infrastructure is ‘just the market’ rather than representing something political. Afterall, the restrictive rules on FDI in other countries means that we’re not aligned to a brand of universal thought on this. The underfunding of European universities – for example – means that the sector arguably has taken to servicing global elites and seeking out international (non-EU) money (from all sorts of places) that helps to tailor intellectual agendas and allows for foreign-domestic political debates/fights to be had on EU soil, away from the more problematic political environments of those students. This is the sort of political activity that gave European governments the creeps in the 1920s, and whilst the positive externalities of internationalisation are clear to those who work in universities – as anyone engaged in Horizon2020 funding, or in finding research partners in the US will tell you – there is a potential darker side that administrators seem unkeen to think about. Whether these networks pose a risk or not would require the right question, the right data and fine judgments. And of course it might be that we are fine exponents of exporting our own norms…
So, should we be worried about this hybridity as it pertains to Russia. Well, Russian money has traveled, and London’s housing market is partly inflated and propped up by it. Money has traveled into think-tanks and research efforts, and into infrastructure. Leveraging influence is not solely a case of invest and nice things will follow. But it helps. The Economist – which has become increasingly shrill on this issue – plotted Russian connections to European political parties to more than suggest that hybrid war threatened the fabric of the continent and the European project in particular. But most of the scaryness seems to be because of the word Russia, rather than the pattern of behaviour, which is a logic of neoliberal economics and PR/influence. Can we unpick or understand the complex influences on our politics (both organisational and ideological)? No. Should we pay attention to the fine documentary by Adam Curtis, Bitter Lake...? Yes, well worth a watch.
So, I would say this, wouldn’t I… but there is much in the concept of hybrid war. But we are only at the start of really understanding what is meant by it, and a country mile off understanding how to counter it. Particularly when countering it will rely upon a challenge to neoliberal orthodoxies.
Kilencen meghaltak és egy nő súlyosan megsebesült kedden délután dél-morvaországi Uhersky Brodban, amikor a Druzba nevű helyi vendéglőben egy ismeretlen férfi lövöldözni kezdett - közölte Patrik Kuncar, a város polgármestere a városi rendőrségre hivatkozva. Az áldozatok között nyolc férfi és egy nő van. A kilencedik halott maga a támadó, aki a rendőrségi támadás idején agyonlőtte magát.
This article originally appeared in the Global Policy Journal.
The fast-evolving processing power of computers is a fact that hardly surprises anyone today. This was predicted five decades ago by the co-founder of Intel, Gordon Moore , in what is now widely known as the Moore Law. He postulated that processor speed (and overall processing power) for computers would double every 18 months and that the number of transistors on an integrated chip would double at the same pace. The law gained so much popularity that it became some sort of self-fulfilling prophecy and chip fabricators raced to make processors faster, smaller and simultaneously cheaper.
In the past decade, this trend appears to have reached a plateau as the difference in processing speed between 2000 and 2009 has barely doubled in a 10-year span. This has prompted conclusions that the end of Moore’s Law, anticipated for a while now, is nearing. To keep up with the demand to increase processing power, big companies will have to invest much more in research, thus potentially spiking up the prices of processors.
While the accuracy of Moore’s Law is now losing ground, this does not mean that the search for supercomputing has faded too. Moving away from conventional computing, with its already impressive power, quantum computing is part of a new revolutionary generation of computer research which aims to surpass not only limitations in speed but also in the technical limits of the chip-making material . Whatever speed can be imagined with computers, it is nowhere near what quantum computing is expected to achieve.
In the 1980s, the notion that quantum physics could be used to perform computations simultaneously, on massive amounts of information, emerged for the first time. The quantum computer is considered a “ seventies child ” as its conceptual foundations were first laid during the late ‘70s and early ‘80s. The interest in developing such a machine, with unprecedented speed and agility, was revived in the mid 1990s, when computer theorists began to explore the possibilities of developing quantum computers. Highly ambitious researches placed overly optimistic bets that quantum computers could be in use by 2010. To date, scientists have yet to create an operational quantum computer but this task is surely not hampering its research and development. “ The Holy Grail of supercomputing ” is now drawing increasing interest and investment: NASA, IBM and Google’s D-Wave Systems are among the most important actors in the field and more recently, the National Security Agency joined the ranks by pledging $ 80 million on basic research in quantum computing.
What is so special about quantum computing?
Unlike a classic computer, quantum computers do not work in an orderly and linear manner. Conventional computers function according to binary logic, using 1s and 0s (“either/or” distinctions) and stringing together combinations of these. By contrast, quantum computing uses quantum bits or qubits, which are basically quantum particles such as electrons or atom nuclei. This gives quantum computers unique functionalities as qubits communicate with each other through entanglement and calculate every existing possibility at the same time. Qubits are placed in a state of “ superposition ” where they do not have values of 1 or 0 but both. In this regard, quantum computing is a step further from what is possible in the real world as qubits can be in more than one state at a time.
This means that quantum computers would be capable of huge calculations and enormous processing power. They could surpass conventional computers in speed and could help solve or race through problems that would normally take other systems eons to solve.
The ongoing research is also charting new grounds in material science and our understanding of materials properties. For example, a leading start-up in quantum computing, D-Wave Systems , claims that certain types of metals, such as niobium (a soft metal that becomes superconducting at low temperatures), are key to the development of the quantum processor. Moreover, other recent breakthroughs in silicon-wrapped quantum technology prove again that more thorough investigation of materials and properties of chemical elements can unlock the unknowns that have delayed progress.
Quantum computers, once fully functional, will mark the ultimate frontier in computing, being able to make calculations billions of times faster. It is their extraordinary features which also prompt immediate considerations about their social and security implications. In a future not too distant, when the quantum leap will have reached an operational stage, we can expect a series of groundbreaking uses. For a start, quantum computers could help scientists find cures for cancer, advance research of Alzheimer’s disease, or find distant planets; they could be used to simulate or test certain political and military scenarios and inform policymakers about possible outcomes. But by far, the greatest scope for interest (and investment) so far has been the promise of quantum computing in the area of cryptography.
Quantum computers could potentially be capable of breaking public key encryption , which is responsible for protecting almost all private communication online. Not surprisingly, the US spy agency, the NSA , has been at the forefront for the development of the supercomputer which could crack most keys used for encrypted communication. Its sponsored research project, called “ Penetrating Hard Targets ”, aims to build a computer that could break almost all forms of encryption that protects medical, business, e-commerce, banking or government records in the world. Clearly, if successful, this would be the ultimate ‘Big Brother moment’ for the agency. Today, long encryption keys (particularly for sensitive information) are very difficult to break, taking up to several years but quantum computer could accelerate the process, making it millions of times faster. Similarly, since qubits cannot be cloned, hacking a code encrypted with a quantum computer is virtually impossible and hacking would mostly be a concern if a hacker were to have access to a quantum computer.
Racing for the supercomputer
The development of quantum computing remains highly disputed and advancing slow due to a combination of scientific unknowns, mixed reactions in the academic community and industries. A persistent obstacle has been the challenge of instability and vulnerability. Quantum computers combine computing with quantum mechanics, an extremely complex and still mysterious branch of physics. On top of this, as calculations take place at the quantum level , no outside interference (such as light or noise) is permissible since the qubits would collapse and it would disrupt the calculations. This makes quantum computing extremely expensive to build and maintain.
However, as elusive as the search for the super computer might be, it has sparked a competition in which both states and private shareholders have stakes.
The US Defence agencies have been investing in quantum computing research for over a decade and other countries have gradually entered the race as well. Now China, Russia and other European states are investing in quantum research and Canada’s Institute of Quantum Computing at University of Waterloo is over a decade old. In late 2013, the UK government announced it would spend £270 million to build a network of quantum computing centres.
Security Implications
The construction of a functional quantum computer means much more than simply winning the innovation race and it has clear national security relevance. In the context of the current of development, the race is now fought at an academic level, where researchers work in interdisciplinary labs to shrink transistors to the quantum scale.
However, as pointed out by many, science is now inevitably done in global collaborative frameworks and it is quite difficult to estimate if there are guaranteed paybacks for individual nations. Ultimately, the Herculean efforts and funding that defence agencies pledge often pass through private industry and will benefit the commercial sector too, not only the government.
Quantum computing will have very disruptive effects, both at national levels and internationally. They will have implications for information security , impacting both symmetric-key algorithms and public-key algorithms. If spying and mass surveillance are already impressively effective with the more limited means we now have in place, quantum computing will simply enable unprecedented breaches of privacy and access to confidential data in businesses, hospitals, banks or governments worldwide. The NSA no longer hides its support and sponsorship for the development of quantum computing which could be used to crack any encryption system in the world. Hand-in-hand with the race for the supercomputer is the race to ‘own’ the internet and gain virtually unlimited access to information. Quantum communication will redefine how we communicate, making data transfer faster and more able since quantum computers can process enormous amounts of information with high encoding and decoding speeds.
The amount of distrust already existing over questions of privacy both domestically and between governments is only expected to surge, creating further domestic and diplomatic frictions and accelerating competition between states. A likely scenario is that with functional quantum computers, some governments will speed up the investment for the creation of other, cryptography-capable computers . At the same time, this competitive situation will leave behind less resourceful countries, widening a digital gap that is already stark.
The unique potential of quantum computers could also give unmerited temporary advantage to some individuals, retailers or groups over others. Quantum computers could dramatically improve stock market predictions thus benefiting wealthy financial institutions . This is not an imminent risk since the fees for access to quantum computing will be staggering, yet the possibility of quantum computing entering the Wall Street is not to be dismissed.
Coexistent with its numerous security risks, quantum computing offers a set of unique opportunities for humanity and states. From better logistic optimizations to DNA sequencing, better predictions in global warming and weather forecasting, quantum computing means new potential to tackle global challenges, improve healthcare and find cures for diseases, solve optimization, labour or economic problems (including in agriculture or water management). The application of quantum computers to solve optimization problems could be especially useful in the defence sector or space, where it can significantly impact the speed and accuracy of operations. A quantum computer could calculate ideal paths for travel either on land or air and it could improve code verification dramatically. Indeed, software verification is a key element in the defence industry’s push for quantum computers, especially as complex software systems are increasingly at the heart of defence applications. The F-35 joint strike fighter , for instance, has more than 10 million lines of code on the aircraft and quantum computers could be employed to do the code validation and verification.
Google also hopes that quantum computers could be used to make better and faster robots and more sophisticated artificial intelligence. Their use could also be extended to aviation in instances such as snowstorms where quantum computers could help find optimal alternative routes instantly. The Space agency NASA has also shown interest in quantum computing and its Quantum Artificial Intelligence Laboratory is working on exploring the likely applications of quantum computing in space. In addition to optimization solutions during space missions, such as better planning and scheduling, the lab is also working on improving the operations of NASA’s Kepler mission, which searches for habitable and Earth-sized planets. Current computational limitations, which use heuristic algorithms to identify transit signals from smaller planets, only help find approximate solutions whereas a quantum computer could perform data-intensive searches among the over 150,000 stars in the field of view of the spacecraft.
Emerging technologies for renewable energy are also taking into account the power of quantum computing and California’s renewable energy program aims to use “smart grids” or “quantum grids”, which is a network of quantum computers, to allow higher efficiency of input and output of energy. Qubits can also be deployed in solar panels to replace current photovoltaic cells technology or in quantum batteries and quantum dots can be embedded as semiconducting material, revolutionizing the energy sector.
Quantum computing is possibly a final threshold of scientific marvel, which will bring unparalleled precision and accuracy in computing. Given the extremely sensitive functions it can perform, it is critical that research and dissemination is done responsibly, with a view to harness its positive contributions. It is indeed critical that the development of quantum computing progresses in a way that will impede its becoming merely a tool for enhanced surveillance and endless control.
A Heim Pál Gyermekkórház 60 millió forint európai uniós támogatást nyert el a „Képzési programok támogatása a Heim Pál Gyermekkórház szolgáltatásfejlesztése érdekében” című projektjéhez.
A Kórházban 5 szakorvos és 10 tanuló vett részt a képzési motivációs ösztöndíj pályázatban, akiknek a képzés idejére ösztöndíjat folyósítottak.
A csecsemő- és gyermekgyógyász szakorvosok második szakvizsgájukat szerezték meg az endokrinológia, a gyermek-gasztroenterológia, a gyermek-tüdőgyógyászat, a gyermek és ifjúsági pszichiátria, valamint a hematológia szakterületeken, melyek hiányszakmának minősülnek az Intézményben.
Az Intézet a Raoul Wallenberg Humán Szakképző Iskola csecsemő- és gyermekápoló szakképzésében részt vevő 10 fő nappali tagozatos hallgatójával kötött tanulmányi szerződést az ösztöndíj folyósítására. A hallgatók sikeres vizsgát tettek 2014. június hónapban, majd teljes munkaidős közalkalmazottként alkalmazásra kerültek a gyermekkórházban.
A támogatás lehetővé tette a minőségi betegellátás színvonalának további emelkedését. Az új szakképesítések megszerzése, az új szakápolók alkalmazása pedig hozzájárult ahhoz, hogy a Heim Pál Gyermekkórház biztosítani tudja a szakmai fejlődés által megkövetelt elvárásokat.
A „Képzési díj és ösztöndíj támogatása az intézmények számára a Közép-magyarországi Régióban” elnevezésű pályázati kiíráson 60.000.000 forint, 100%-os támogatást elnyert fejlesztési projekt 2012. szeptember 1-jén indult és 2014. december 31-én zárult.
Amit Magyarországon megakadályozták a lakossági tiltakozások, azt bevezetik Oroszországban – várhatóan már a 3. negyedévtől kezdődően netadót kell fizetni. Az erről szóló törvényjavaslatot már a parlament elé terjesztette a Kulturális Minisztérium.
A javaslat évi 300 rubel, vagyis nagyjából 1300 forint befizetését írja elő minden egyes üzleti és lakossági előfizetés után, beleértve a mobilnetet is. A törvényjavaslat szerint az összeg egy – meg nem határozott részét – szerzői jogdíjként fizetik majd ki hangoskönyvek, videós tartalmak után.
A Gazdaságfejlesztési Operatív Program „Komplex vállalati technológiafejlesztés mikro-, kis- és középvállalkozások számára” című konstrukciója keretében 63,97 millió forint vissza nem térítendő uniós támogatást nyert el az ÓVÁR Építőipari Kft.
A közel 160 millió forint összköltségű projekt során egy korszerű beton vasvágó és hajlító gép beszerzése mellett, új üzemcsarnok épült Mosonmagyaróváron.
Az Óvár Építőipari Kft. tevékenységi köre magas- és mélyépítési munkák kivitelezése, lakatos és vasszerelési munkák végzése. Eddig ezen feladatok végrehajtása a vállalkozás saját telephelyén történt 40-50 éves műhelyépületekben. Ezek az épületek jelentősebb felújításon nem estek át, így technológiai színvonaluk mára elavult lett, méretben sem voltak képesek kiszolgálni a termelési folyamatot, a termelés számára korszerűtlen körülményeket biztosítottak.
E problémák megoldására egy modern üzemi csarnok épült, benne egy kétszintes szociális épülettel, melynek hármas funkciója a lakatosmunkák, a vasszerelési munkák végzése, valamint az anyag- és eszközraktározás.
A projekt keretében egy korszerű betonvasvágó és hajlítógép beszerzése is megtörtént. A beruházás több szempontból indokolt és szükségszerű volt a kapacitáshiányok megszüntetése, a szűk keresztmetszetek feloldása miatt.
A fejlesztés eredményeként lehetőség nyílt az építőipari cég tevékenységének további bővítésére, költséghatékonyságának javítására. A beruházás egyúttal energia megtakarítást tesz lehetővé, és a dolgozók szociális körülményei is lényegesen javultak.
A GOP-2.1.1-12/B „Komplex vállalati technológiafejlesztés mikro-, kis- és középvállalkozások számára” című pályázati kiíráson 63 970 618 forintos támogatást elnyert, 159 926 547 forint összköltségvetésű projekt 2013. november 4-én indult és 2014. december 31-én zárult.
A projekt az Európai Unió támogatásával, az Európai Regionális Fejlesztési Alap társfinanszírozásával valósult meg.
Public Discussion: "Ukraine, ISIS: which role for the use of force?"