You are here

Diplomacy & Crisis News

Know Before They Go: How Military Spouses Can Prepare for Deployments

The National Interest - Fri, 23/07/2021 - 22:49

Victoria Kelly

military,

It’s not just the service member who has to prepare for deployment.

It’s not just the service member who has to prepare for deployment. In fact, a spouse staying at home often needs to do just as much, or more preparation. Start early and don’t wait until the last minute (emotions will run high, and you’ll want to have all the practical stuff out of the way). Here is a list of important things to consider before your spouse’s deployment:

Make sure you have all your paperwork in order. This includes: Asking your spouse to create a power of attorney; making a will for both you and your spouse; reviewing your homeowners’ insurance and life insurance; making sure you have flood insurance (I have personally needed this, as have people I know who didn’t live near an ocean); making sure your passport is up to date if you plan on visiting your spouse overseas; collecting birth certificates, car titles, house deeds, marriage licenses, etc. Put all your most important paperwork in one folder or box.

Become a joint account holder on your accounts. You can typically do most transactions with a power of attorney, but if your name is on the account it saves you time and effort. This doesn’t just mean bank accounts. Add your name to the cable, internet, insurance, rent, credit cards, etc. so you can pay these. Make sure the bills are going to your email address, not your spouse’s, so you don’t pay them late, or set up automatic payments.

Know your spouse’s social security number (and write it down somewhere secure).

Know every password (and pin number).

If you don’t already, know where to take the car if it breaks, as it inevitably will.

Talk about care packages. How often will you send them? What kind of things are you allowed to send? What kind of things does your spouse want to receive? This might include subscribing to a favorite magazine and including it in the package once a month. Come up with some ideas ahead of time. Make sure you know your spouse’s mailing address. Also, send this address to friends and family and ask them to commit to sending at least one care package during the deployment; it will mean a lot.

Buy a lot of phone cards.

Make sure they will work on your spouse’s ship or base, because some only accept certain kinds. Sign up for a Skype account too.

Have a copy of your spouse’s orders.

Get your house in order.

Commit an afternoon together to changing all of the batteries in the smoke detector, all hard-to-reach lightbulbs and fixing minor things that are broken. It will make your life so much easier not to worry about that stuff later on.

Make a budget.

Your budget will change during deployment. Make sure you have a household budget for what you will spend at home, and make sure your spouse has a budget for what they can spend on port calls, time off, and expenses on the ship. Discuss how much you want to save during deployment also.

Know who to call.
Do you have a landlord? Does anyone do your yard maintenance? Who is your electrician? Who is your plumber? Who fixes your HVAC? Do you have your spouse’s family’s phone numbers in case of an emergency? Does your neighbor have a copy of your key in case you get locked out of the house?

Know where you’re going in the case of a natural disaster.

I can’t even count the number of times I had to evacuate during tornado and hurricanes warnings. West-coasters will need an earthquake or wildfire plan. Make a list of things you will take with you so you can grab them quickly. Have documents all in one place. Make sure you have pet leashes and tags. Know which hotels accept pets (all Starwood hotels, for example, do).

Have the tough conversations.

It’s not easy, but make sure you discuss worst-case scenarios. What kind of funeral does your spouse want? What is the life insurance policy? Is there a trust for your children? What does your spouse envision for your and your children’s future? Many people going on deployment write a note for their spouses and children to be opened if they don’t make it home.

Have a backup childcare plan.

If you have no family nearby, make sure you have a plan for who will watch your children if there is an emergency and you have to go to hospital, get stuck at work, go into labor if you’re pregnant, or get stuck on a flooded street (it’s happened to me). Talk to your neighbors, babysitters and fellow spouses to compile a list of who you will call for what situations.

Know how to send a Red Cross message.
If there’s a family emergency, the Red Cross can contact your spouse on deployment even when there is no internet access. Put this number if your phone: 1-877-272-7337.

Read more from Sandboxx News:

This article was originally published 8/23/2020

This article first appeared at Sandboxx News.

Image: Flickr.

Like Concealed Carry Revolvers? There Is Nothing Like the Model 66

The National Interest - Fri, 23/07/2021 - 22:47

Richard Douglas

Revolvers,

The model 66 was legendary when it first hit the market in the 1950s.

Here's What You Need to Remember: If you’re in the market for a revolver that is functional and can be used for concealed carry, I cannot recommend the Model 66 enough. It certainly isn’t a Glock, an S&W M&P 20, or other such more modern tech-savvy weapons, but it is one of the most advanced revolvers out there.

The model 66 was legendary when it first hit the market in the 1950s, becoming a staple of U.S. law enforcement for over thirty-five years. The Model 66-8, S&W’s fresh new take on this classic has already become popular due to the original Model 66 having been discontinued in the early 2000s.

Today, we’re going to delve into the big picture of this gun and see if it lives up to the legacy its predecessor left. Let’s go!

Accuracy 

The Model 66 had an emphasis on improving the sight quality, with slimmer sights and a red ramp sight that helps improve visibility and target acquisition. In five-shot groupings it measured at the worst 3.25 inch groupings, and at its best 1.25 inch groupings.

At twenty-five yards, the Model 66 can even equal the Sig Sauer P226 Legion and other such magazine-fed, red dot sight-assisted, or modified sidearms, making it viable even in these times. In my experience, the drastic sight improvements have really given this pistol new life in comparison to models from the 1960s–1970s when it was a police-issued weapon.

Reliability 

As with most revolvers, reliability is one of the Model 66’s selling points. A lack of moving parts means less can break on this firearm, but that doesn’t equate to invincibility. When firing magnum rounds specifically for a duration of time, the barrel of a revolver can begin to break down, including the barrel melting.

Overall, reliability is on par with most wheel guns. If you steer clear of Magnum ammo, you’re far less likely to encounter any problems and will find it an extremely reliable revolver that is ideal for concealed carry.

Handling 

In my experience, the Model 66 is exceptionally smooth-functioning for a double-action revolver and doesn’t feel like a rough wheel gun in hand. The only negative I can place on it handling-wise is the size and blockiness of the Model 66, as those with smaller hands or a lack of familiarity with revolvers will likely struggle to fire this gun effectively. Practice and just getting used to the feel of the 66 can certainly deal with this, but I would not recommend this for those unfamiliar with such weapons.

To me the 66 is moderately easy to handle, but I wouldn’t put it in the same comfort tier as a Glock 19, S&W M&P 20, or other such magazine-fed pistols. In all fairness however, I am not exactly a consistent user of revolvers and this may be due to my lack of experience with them.

Trigger 

At four pounds and 11 ounces, the Model 66’s trigger pull is a perfect balance and like many K-frame revolvers pull easily in-hand. An excessively light trigger for a revolver actually doesn’t feel right from my experience, and the 66 excels at smooth firing because of its exceptional trigger.

Overall this is one of the best triggers I’ve ever felt, and definitely has lightened and smoothed out the trigger pull in comparison to the original models. It would even be an easy trigger for those inexperienced with revolvers to become familiar with and shoot accurately.

Magazine and Reloading 

True to the revolver name, the Model 66 is a six-shooter and only holds six rounds; arguably its most significant downfall. The cylinder action isn’t loose, therefore being quite durable and rugged for those who might not be as gentle with their guns as others.

Reloading is as speedy as could be for a revolver, especially if you’re utilizing a speed-loader. However, it still will be nowhere near as quick as a magazine-fed pistol, clocking it at its fastest near nine seconds. In a fight against a Glock or Sig, this would likely not end well for the Model 66 user not only because of capacity but reload time as well.

Length and Weight 

Coming in at 4.25 inches, the Model 66 is almost hand-made to be a perfect concealed carry revolver. It isn’t so short that accuracy is an issue at mid-range, yet it doesn’t profile when carried to the point you look like you’re hiding something. This makes the gun also very easy to handle, as it’s not too compact nor an excessively long western-style six-shooter.

Surprisingly, the Model 66 is only two pounds in weight, almost a full pound lighter than original models, and being on par with most other modern handguns. For me, this is the ideal weight for this revolver, as it makes recoil controllable while also not making you feel like a rock in your pocket. It is no doubt the lightest revolver I’ve fired, which made it a pleasure to shoot!

Recoil Management 

For me, the recoil of the Model 66 is not bad at all even when firing .357 Magnum. However, the structure and frame of the pistol itself may ‘amplify’ the recoil to those who haven’t used revolvers before but have used magazine-fed pistols. Overall reacquiring your target after firing is great with this revolver, as the recoil doesn’t throw the weapon to either side and keeps you relatively centered when aiming.

Compared to other higher-end revolvers like Ruger, I personally find this to have the best overall recoil. It’s just light enough to make it very manageable especially with great experience and this makes it excellent for a concealed carry revolver where every shot counts.

Price 

Running at between $500–$650 dollars, I think this weapon is a steal considering most high-quality revolvers are well over $900. It’s extremely durable, shoots well, and is one of the best revolvers for concealed carry on the market. If there was one wheel gun I had to choose to be on my hip in modern times, this would likely be it. Which brings us to my verdict...

My Verdict?

If you’re in the market for a revolver that is functional and can be used for concealed carry, I cannot recommend the Model 66 enough. It certainly isn’t a Glock, an S&W M&P 20, or other such more modern tech-savvy weapons, but it is one of the most advanced revolvers out there.

When it comes to reliability in revolvers, this gem is the definition of it. It is an absolute must-have for anyone that loves wheel guns, whether as a collector or carrier!

Richard Douglas is a firearms expert and educator. His work has appeared in large publications like The Armory Life, Daily Caller, American Shooting Journal, and more. In his free time, he reviews optics on his Scopes Field blog.

Image: Creative Commons.

Receiving Child Tax Credit Stimulus Checks? You Might Owe the IRS.

The National Interest - Fri, 23/07/2021 - 22:35

Ethen Kim Lieser

Child Tax Credit,

Tax experts are already warning that those smiles could quickly turn into frowns when tax season rolls around next year.

There were undoubtedly plenty of happy families on July 15 when the Internal Revenue Service began issuing payments from the expanded child tax credits that were approved under President Joe Biden’s $1.9 trillion American Rescue Plan.

But tax experts are already warning that those smiles could quickly turn into frowns when tax season rolls around next year.

This is due to the fact that in some instances, these currently credit-eligible parents must repay the money—a $250 or a $300 payment per child each month through the end of 2021—if their financial situations change this year.

Do keep in mind that the federal government is directed under Biden’s stimulus legislation to issue advance payments of the credit in periodic installments. And since these payments are largely based on the IRS’ estimates on available data—such as income, marital status, and number and age of qualifying dependent children—there could potentially be outdated or inaccurate data that trigger an overpayment of the credits.

In an effort to avoid such a precarious situation, some parents already have decided to opt out of the monthly checks. Be aware that those taking this route could potentially be eligible to collect a one-time lump sum during the 2022 tax season.

There are, however, now some protections in place for the nation’s lower-income parents. Lawmakers were able to pass legislation that states that households making $50,000 or less and joint filers with incomes of $60,000 or less won’t be responsible to repay excess credit payments.

How to Opt Out

For those parents who want to opt out of the payments but haven’t done so, the process is very straightforward. Just make sure to head over to the newly launched Child Tax Credit Update Portal, which will allow “families to verify their eligibility for the payments and if they choose to, unenroll, or opt out from receiving the monthly payments so they can receive a lump sum when they file their tax return next year,” the IRS notes, adding that more features will be included in the Update Portal to make the processing of the credits as smooth as possible.

Babies Born This Year

Another question often brought up by parents is whether babies born this year will make them eligible for the child tax credits. According to the IRS, it appears that they would indeed be eligible for the funds—but do know that there is an extra step involved to claim those credits.

On the aforementioned Update Portal, parents are able to report any changes, such as number of dependents, including those newborns, throughout the year. For those who have yet to file their federal tax returns, they should make sure to utilize the Non-filer Sign-up Tool, which will give the IRS the necessary personal and financial information to properly issue the funds.

Ethen Kim Lieser is a Minneapolis-based Science and Tech Editor who has held posts at Google, The Korea Herald, Lincoln Journal Star, AsianWeek, and Arirang TV. Follow or contact him on LinkedIn.

Image: Reuters

Modi Rejected an Indian Hero

Foreign Policy - Fri, 23/07/2021 - 22:24
Danish Siddiqui’s death should have been a moment of national unity. The prime minister made it the opposite.

Tokyo 2020: How Japan’s Moment of Glory Has Become a Millstone for The Economy

The National Interest - Fri, 23/07/2021 - 22:22

Taku Tamaki

Japan Olympics, Japan

"Japan is back?" Maybe not.

“Japan is back!” declared Shinzo Abe, the then Japanese prime minister, after he made a surprise appearance dressed as Super Mario at the closing ceremony of the 2016 Rio Olympics. Tokyo 2020 was supposed to be a moment of national glory, a chance to put the Fukushima nuclear disaster of 2011 firmly in the past, and to showcase Japan’s technological pre-eminence in spearheading an environmentally sustainable Olympics.

Yet the 2020 Tokyo Olympic Games is beginning – a year later than planned – without spectators. As athletes converge on Tokyo, the city is back in emergency restrictions for the fourth time.

The government remains determined to make the games a COVID-secure success. But with Japanese multinationals shying away, infections surging, and costs three or four times higher than the original estimates, it is barely even clear if this spectacle can go the distance.

Great economic hopes

Tokyo 2020 was supposed to be a great economic stimulus, replicating the achievements of Tokyo 1964. It was thanks to hosting that Olympics that Japan invested in infrastructure such as the famous Shinkansen bullet train.

In Tokyo, they built an expressway linking the international airport in Haneda to the centre, and widened some of the city’s major arteries, while an important new highway between Osaka and Nagoya was also opened. These infrastructure improvements helped to bring about the Japanese economic miracle over the next couple of decades.

But this time around, there were signs of trouble long before the pandemic. The main Olympic stadium, which was designed by the late British architect Zaha Hadid, had to be re-designed from scratch as its complex roof structure became too expensive. Instead, the organisers built a stadium at roughly half the cost.

As costs spiralled, the organisers looked at moving some events out of Tokyo to existing venues elsewhere. Not only would this reduce costs, it would help spread the benefits of economic development – in an echo of UK-style “levelling up”.

Just like Britain, Japan suffers from widening inequalities between the capital and the rest of the country. For example, house prices rose 15% in Tokyo between 2002 and 2018 while falling between 5% and 15% everywhere else. Over the same period, the disparity in wages grew from about 20% to more like 35%.

The Japanese regions were sceptical of the whole idea that the Olympics would help level up. Local business people knew that construction projects would still be concentrated around Tokyo, with limited benefits to their regions. There was also talk that demand in Tokyo would cause a supply shock, leaving manufacturers in the regions clamouring for materials.

That particular concern might have been overblown in the end, and some moves did see investment. For example, cycling has been moved to Izu some 125 miles west of the capital, and the city’s velodrome has been upgraded.

Other moves failed, however. Miyagi prefecture in north-east Japan, 250 miles from Tokyo, was considered for rowing and canoe sprinting. This was seen as a way to accelerate the slow pace of reconstruction following the March 2011 earthquake and the meltdown of the Fukushima Daiichi nuclear plant.

But again financial reality intervened. Disputes over cost-sharing and other logistical issues emerged, and it was decided to hold rowing in Tokyo Bay as originally intended. Another venue in Miyagi is hosting football, while baseball and softball are taking place in Fukushima itself.

Despite such efforts to save money, the government’s estimate for the cost of the Olympics had risen from the initial US$7.3 billion to US$12.6 billion (£5.3 billion to £9.2 billion) by late 2019. Then came the pandemic. Thanks to the postponement, the official estimates are a $22 billion cost, and some are saying it will be nearer US$30 billion. Meanwhile, the huge stimulus from international tourists that the Japanese authorities would have been expecting from the Olympics is no longer happening.

What now?

Even before it began, domestic support for the Olympics was weak, as the wider economic benefits were unclear, especially outside Tokyo. With COVID infections currently accelerating in Japan, and Tokyo particularly badly hit – 4,943 new national cases on July 21, including 1,832 in the capital – the public mood has shifted further against the games. According to a recent survey, 55% of Japanese think the games should not go ahead, and 68% think that infections can’t be controlled by the organisers.

As expected, some athletes arriving into Japan have tested positive, including participants from Uganda and the US, along with British athletes “pinged” on a flight en route to Tokyo as close contacts to people with infections.

The possibility of the games turning into a super-spreader event seems to have prompted Toyota to pull its TV adverts. The leaders of Panasonic, NTT, Fujitsu, NEC and Keidanren, the employers’ association, are skipping the opening ceremony. Increasingly, the idea that there needs to be a trade-off between health and the economy seems to be losing traction.

The Japanese government is still determined to go ahead with the games, despite being warned of accelerating community transmission by its scientific advisers. The fourth Tokyo state of emergency began a few days ago, curbing people’s movements until August 22. Bars and restaurants are having to curtail late-night services as part of the restrictions, inflicting further pain on a sector that has already been hit hardest by COVID. Tokyo’s nightlife is being blamed for the spike, never mind that the government has been unwilling to impose tougher restrictions, claiming it is prevented by the constitution.

In this situation, running a COVID-secure Olympics looks increasingly like a major challenge. With the system of isolation bubbles at the athletes’ village already failing, it brings to mind events on the stricken cruise ship Diamond Princess, where COVID spread like wildfire after it left Yokohama in February 2020.

Just like the UK is trying to plough on with its own plan for opening up the economy as cases surge, it’s only a matter of time before both nations find out whether the supposed trade-off between health and the economy is workable – or is actually a false dichotomy.

 is a Lecturer in International Relations, Loughborough University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image: Reuters

As Taliban Expand Control, Concerns About Forced Marriage and Sex Slavery Rise

Foreign Policy - Fri, 23/07/2021 - 22:13
In some Afghan towns, women are fleeing ahead of insurgent takeovers.

Increased jihadist attacks in Burkina Faso spark record-breaking displacement: UNHCR

UN News Centre - Fri, 23/07/2021 - 22:08
Rising violent attacks by jihadist groups in Burkina Faso are forcing record-breaking numbers of people to flee both inside the country and across international borders, the UN refugee agency, UNHCR, reported on Friday. 

Believe It or Not, Adolf Hitler Built a Stealth Aircraft

The National Interest - Fri, 23/07/2021 - 22:04

Sebastien Roblin

History, Europe

The Horten brothers were given the go-ahead to pursue the concept in August 1943.

Here's What You Need to Remember: The Ho 229 might have been a formidable adversary over the skies of World War II, but in truth the plane was far from ready for mass production by the war’s end. While it seems a stretch to claim that the Ho 229 was intended to be a stealth aircraft, there’s little doubt that it pioneered design features that continue to see use in low-observable aircraft today.

Northrop Grumman revealed this year it is developing a second flying wing stealth bomber, the B-21 Raider, to succeed its B-2 Spirit. However, it was a pair of German brothers in the service of Nazi Germany that developed the first jet-powered flying wing—which has been dubbed, debatably, “Hitler’s stealth fighter.”

But maximizing speed and range, not stealth, was the primary motivation behind the bat-shaped jet plane.

Walter Horten was an ace fighter pilot in the German Luftwaffe, having scored seven kills flying as wingman of the legendary Adolf Galland during the Battle of Britain. His brother Reimar was an airplane designer lacking a formal aeronautical education. In their youth, the pair had designed a series of innovative tail-less manned gliders.

In 1943, Luftwaffe chief Herman Goering laid out the so-called 3x1000 specification for a plane that could fly one thousand kilometers an hour carrying one thousand kilograms of bombs with fuel enough to travel one thousand kilometers and back—while still retaining a third of the fuel supply for use in combat. Such an airplane could strike targets in Britain while outrunning any fighters sent to intercept it.

Clearly, the new turbojet engines Germany had developed would be required for an airplane to attain such high speeds. But jet engines burned through their fuel very quickly, making raids on more distant targets impossible. The Horten brothers’ idea was to use a flying wing design—a tail-less plane so aerodynamically clean it generated almost no drag at all. Such an airframe would require less engine power to attain higher speeds, and therefore consume less fuel.

Flying wing designs were not an entirely new idea and had been used before in both gliders and powered aircraft. During World War II, Northrop developed its own high-performing XB-35 flying wing bomber for the U.S. military, though it failed to enter mass production. Despite the aerodynamic advantages, the lack of a tail tended to make fly wing aircraft prone to uncontrolled yaws and stalls.

The Horten brothers were given the go-ahead to pursue the concept in August 1943. They first built an unpowered glider known as the H.IX V1. The V1 had long, thin swept wings made of plywood in order to save weight. These “bell-shaped” wings compensated for yawing problem. Lacking a rudder or ailerons, the H.IX relied upon “elevons” (combinations of ailerons and elevators) and two sets of spoilers for control. The elevons could be moved differentially to induce roll, or together in the same direction to change pitch, while the spoilers were used to induce yaw.

Following successful tests of the V1 glider at Oranienberg on March 1944, the subsequent V2 prototype was mounted with two Jumo 004B turbojet engines nestled to either side of a cockpit pod made of welded steel tubing. It also featured a primitive ejection seat and a drogue chute deployed while landing, while redesigned tricycle landing gear was installed to enable the plane to carry heavier loads.

The first test flight occurred on February 2, 1945. The manta-shaped jet exhibited smooth handling and good stall resistance. The prototype even reportedly beat an Me 262 jet fighter, equipped with the same Jumo 004 engines, in a mock dogfight.

But the testing process was cut short on February 18 when one of the V2’s jet engines caught fire and stopped mid-flight. Test pilot Erwin Ziller performed a number of turns and dives in an effort to restart the engine, before apparently passing out from the fumes and spiraling his plane into the ground, mortally wounding him.

Regardless, Goering had already approved the production of forty flying wings, to be undertaken by the Gotha company, which mostly produced trainers and military gliders during World War II. The production planes were designated Ho 229s or Go 229s.

Because of the Ho 229’s great speed—it was believed the production version would be able to attain 975 kilometer per hours—it was repurposed to serve as a fighter with a planned armament of two heavy Mark 103 thirty-millimeter cannons. Construction of four new prototypes—numbered V3 throuh V6— was initiated, two of which would have been two-seat night fighters.

However, the Ho 229 never made it off the ground. When American troops of VIII Corps rolled into the factory at Friedrichroda, Germany in April 1945, they found just the cockpit sections of the prototypes in various stages of development. A single pair of corresponding wings was found 75 miles away. The most complete of the four, the V3 prototype, was shipped back to the United States for study along with the wings, and can today be seen under restoration at the Udvar-Hazy Center of the United States Air and Space Museum in Chantilly, Virginia.

The Hortens were reassigned to draft specifications for a flying wing jet bomber with range enough to deliver an atom bomb to the east coast of the United States. Their resulting schematics for the Horten H.XVIII “Amerika Bomber” flying wing were never realized, except arguably in the film Captain America.

Was the Ho 229 a stealth fighter?

One word you haven’t seen in this history so far is “stealth”—and that’s because there isn’t any documentation from the 1940s supporting the notion that the flying wing was intended to be a stealth aircraft. And yet, the Hortens had stumbled upon the fact that a flying wing design lends itself to the sort of reduced radar cross-section ideal for a stealth plane.

Reimer Horten moved to Argentina after the war, and in 1950 wrote an article for the Revista Nacional de Aeronautica arguing that wooden aircraft would absorb radar waves. Thirty years later, as the theory behind stealth aircraft became more widely known, Reimer wrote that he had intentionally sought to make the Horten flying wing into a stealth plane, claiming that he had even constructed the airframe using a special radar absorbent mixture of carbon, sawdust and wood glue without notifying his superiors. Two tests were undertaken to determine the presence of the carbon dust, one of which supported his claim and the other that didn’t. In general, historians are skeptical that stealth was a design goal from the outset.

In 2008, Northrop Grumman teamed up with the National Geographic channel to reconstruct a mockup of the Ho 229, which they tested for radar reflection, and then pitted against a simulation of the British Chain Home radar network. Their findings were less than overwhelming—the flying wings would have been detected at a distance 80 percent that of a standard German Bf. 109 fighter.

The Northrop testers stressed that combined with the Ho 229’s much greater speed, this modest improvement would have given defending fighters too little time to react effectively.

But of course, the flying wing’s main feature was always supposed to be its speed, which could have exceeded the maximum speed of the best Allied fighters of the time by as much as 33 percent. Detection time would not have mattered greatly if it could outrun everything sent to intercept it. Furthermore, stealth would have had little usefulness in the fighter role the Ho 229 would actually have assumed, as the Allied daylight fighters ranging over Germany did not benefit from radars of their own.

The Ho 229 might have been a formidable adversary over the skies of World War II, but in truth the plane was far from ready for mass production by the war’s end. While it seems a stretch to claim that the Ho 229 was intended to be a stealth aircraft, there’s little doubt that it pioneered design features that continue to see use in low-observable aircraft today.

Sébastien Roblin holds a Master’s Degree in Conflict Resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing, and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring. This first appeared in 2016 and is being republished due to reader's interest

Image: Wikipedia.

Why The Army Didn't Want to Say Goodbye to the M1 Rifle

The National Interest - Fri, 23/07/2021 - 22:03

Paul Huard

Guns,

The M-1 carbine was in the right place at the right time.

Here's What You Need to Remember: The M-1 carbine was an alternative to the venerable M1911 pistol that was a proven man-stopper but demanded a fairly high skill level on the part of the shooter.

A grim-faced U.S. Army major led a group of armed men away from a tropical village he decided not to attack. Wearing jungle boots and olive-drab battle dress, Edwin Brooks grasped a lightweight, reliable, .30-caliber weapon in his right hand as he walked.

It was an M-1 carbine.

The scene could have been anywhere in the South Pacific during World War II or somewhere near the Pusan Perimeter during the Korean War. But Brooks also wore a green beret with a Special Forces flash and he was leaving the then-South Vietnamese village of Ban Me Thuot in 1964, leading the indigenous forces he commanded back to base in an effort to defuse a rebellion.

It’s all on the cover of the January 1965 National Geographic magazine in a photo by writer and photographer Howard Sochurek. Not a single M-16 is anywhere to be seen. The Pentagon had shipped thousands of the new M-16s to U.S. troops including the Special Forces, but in 1964 many Green Berets still preferred the M-1 carbine, the weapon of their fathers’ wars.

What’s more, Brooks’ Viet Cong enemy was almost certainly wielding the more modern Kalashnikov assault rifle. As for the Montagnard tribesman Brooks trained and led, they also were carrying some of the 800,000 M-1 carbines the U.S. sent to South Vietnam during the war.

For more than three decades, the M-1 carbine did more than anyone ever expected it to do. Long overshadowed by the iconic and heavy-hitting M-1 Garand, the M-1 carbine began its existence in 1940 when the Secretary of War issued orders for the development of a lightweight and reliable “intermediate rifle.”

“It was a compromise,” Doug Wicklund, senior curator at the NRA National Firearms Museum in Virginia, told War is Boring. “They called it the ‘war baby,’ the younger sibling of the Garand, and it was for soldiers who were not on the front line, something that they would have a better chance of hitting the enemy and defending themselves with.”

The M-1 carbine was an alternative to the venerable M1911 pistol that was a proven man-stopper but demanded a fairly high skill level on the part of the shooter.

The success of the German Blitzkrieg in 1939 had convinced the Army that rapidly deployed maneuver forces such as airborne soldiers or armored columns could punch through front lines and endanger support troops. In theory, the M-1 carbine never was supposed to replace the Garand as a battle rifle—it was supposed to arm cooks and clerks.

But by 1943, up to 40 percent of some infantry divisions were carrying the carbine as their primary weapon, according to The M-1 Carbine, Leroy Thompson’s brief but thorough history of the weapon’s development and use.

In 1944, the Army modified the weapon to shoot both in semi-automatic and full-auto modes—and called it the M-2. It was one of the nation’s first assault rifles, spitting out bullets at a rate of 900 per minute.

During the same year, the Marines on Okinawa used a version of the M-1 fitted with the first U.S. night-vision gear—the so-called “Sniperscope,” visible in the banner photo at top.

“It was an easier gun to carry than the Garand,” Wicklund said. “It was shorter, it was lighter, it was reliable, it was easier to shoot and easier to clean and it had a 15-round magazine. It was easy to tape two magazines together and get 30 rounds to fire. Stopping power was not there with the carbine, but you could fire it more times.”

Once the United States entered into World War II, the Army issued contracts ramping up production of the M-1 carbine. Eventually, more than six million of the weapons in both semi-automatic and select fire models poured out of factories—two million more than the number of Garands produced during the war.

Winchester was one leading producer, but as American companies turned to war production Inland Manufacturing—a General Motors division and producer of a majority of the weapons—National Postal Meter, IBM and even Underwood Typewriter Co. cranked out hundreds of thousands of the carbines.

During World War II and the Korean War, it was completely possible for the Army to issue a company clerk an Underwood typewriter and an Underwood M-1 carbine.

When German troops received the history-changing MP 44 Sturmgewehr, the Wehrmacht put increased firepower in the hands of small units that could direct fully automatic fire at U.S. troops with an assault rifle. The M-1 Garand, hard-hitting as it was, carried only eight rounds to the MP 44’s 30 rounds contained in a detachable box magazine.

Inland Division produced 570,000 M-2 select-fire carbines as a solution. The weapon has a selector switch on the left side of the receiver and it can hold a 30-round box magazine.

It wasn’t a Sturmgewehr, but it was available. “The U.S. military has always used what it has already,” Wicklund said. “We had it in inventory. They were everywhere.”

It was also the ideal platform for a technological development that presaged how the United States would own the night during future wars.

Late in World War II, the Electronic Laboratories Co. developed active infrared night vision in the form of the Sniperscope, a 20-pound package of telescopic sight, infrared flood light, image tube, cables and power pack.

The scope had a range of around 70 yards and fit both the M-1 and M-2 carbine.

The system not only saw action in the Pacific Theater during World War II but troops used it widely during the Korean War. In nighttime battles, Marines packing carbines with the Sniperscope would fire tracers down on the positions of North Korean and Chinese troops, so machine-gunners could target the enemy with heavier fire.

Once again, the M-1 carbine was in the right place at the right time. One of the reasons the Marines selected it as the weapon of choice for the Sniperscope was the weapon’s modest weight and bulk. The lightweight carbine kept the weight penalty on an already heavy weapon system to a minimum, a boon for the G.I. who had to slog the battlefield with it.

Image: Wikimedia

Russian Tanks Got a Taste of U.S. TOW Missiles in Syria

The National Interest - Fri, 23/07/2021 - 21:56

Sebastien Roblin

Russia, Middle East

In February 2016, Syrian rebels filmed a video of a TOW missile streaking towards a T-90 tank in northeast Aleppo.

Here's What You Need to Remember: When Moscow intervened in Syria in 2015 on behalf the beleaguered regime of Bashar al-Assad, it also transferred around thirty T-90As to the Syrian Arab Army, as well as upgraded T-62Ms and T-72s. The Syrian military could desperately use this armored infusion, as it had lost over two thousand armored vehicles in the preceding years—especially after Syrian rebels began receiving American TOW-2A missiles in 2014.

The interconnected conflicts raging across the Middle East today have amounted to a dreadful human catastrophe with spiraling global consequence. One of their lesser effects has been to deflate the reputations of Western main battle tanks mistakenly thought to be night-invulnerable in the popular imagination.

Iraqi M1 Abrams tanks not only failed to prevent he capture of Mosul in 2014, but they were captured and turned against their owners. In Yemen, numerous Saudi M1s were knocked out by Houthi rebels. Turkey, which had lost a number of M60 Pattons and upgrade M60T Sabra tanks to Kurdish and ISIS fighters eventually deployed its fearsome German-built Leopard 2A4 tanks. ISIS destroyed eight to ten in a matter of days.

While these tanks could have benefited from specific defensive upgrades in some cases, the real lesson to be drawn was less about technical deficiencies and more about crew training, competent morale, and sound tactical employment matter more even than “invulnerable” armor. After all, even the most heavily armored main battle tanks are significantly less well protected from hits to the side, rear or top armor—and rebels with years of combat experience have learned how to ambush imprudently deployed main battle tanks, particularly using long-range anti-tank missiles from miles away.

One exception to the general tarnishing of reputations has been Russia’s T-90A tank, 550 of which serve as Russia’s top main battle tank until the T-14 Armatas fully enters service. The T-90 was conceived in the 1990s as a modernized mash-up the hull of the earlier mass-production optimized T-72, and the turret from the higher-quality (but operationally unsuccessful) T-80. Retaining a low profile and a three-man crew, (the tank’s 2A46M auto-loading cannon takes the place of a human loader), the fifty-ton T-90A is significantly lighter than the seventy-ton-ish M1A2 and Leopard 2.

When Moscow intervened in Syria in 2015 on behalf the beleaguered regime of Bashar al-Assad, it also transferred around thirty T-90As to the Syrian Arab Army, as well as upgraded T-62Ms and T-72s. The Syrian military could desperately use this armored infusion, as it had lost over two thousand armored vehicles in the preceding years—especially after Syrian rebels began receiving American TOW-2A missiles in 2014. The T-90s were spread out between the 4th Armored Division, the Desert Hawks Brigade (composed of retired SAA veterans led by pro-Assad warlords) and Tiger Force, an elite battalion-sized SAA unit specialized in offensive operations.

In February 2016, Syrian rebels filmed a video of a TOW missile streaking towards a T-90 tank in northeast Aleppo. In a blinding flash, the missile detonates. However, as the smoke cleared it became evident that the tank’s Kontakt-5 explosive-reactive armor had discharged the TOW missile’s shaped-charge warhead prior to impact, minimizing the damage. (This fact was perhaps not appreciated by the tank’s gunner, who in the full version of the video clambered out of an already open hatch and fled on foot.) Nonetheless, the video went viral.

While the T-90A is still outgunned by Western main battle tanks, it does sport number of defensive systems particularly effective verses anti-tank missiles that (all but a few) Abrams and Leopard 2 tanks lack—and anti-tank missiles have destroyed far more armored vehicles in recent decades than tank main guns have.

If you look head on at a T-90A you may notice the creepy “eyes” on the turret—a reliable method of distinguishing it from similar-looking modernized T-72s. These are actually infrared dazzlers designed to jam laser-targeting systems on missiles, and glow a terrifying red color when active. The dazzlers are just a component of the T-90’s Shtora-1 active protection system, which can also discharge smoke grenades that release an infrared-obscuring aerosol cloud. Shtora is integrated with a 360-degree laser-warning receiver which automatically triggers the countermeasures if the tank is painted by an enemy laser—and can even point the tank’s gun towards the origin of the attack. The T-90A’s second line of defense comes in the form of plates of Kontakt-5 explosive reactive armor, which was designed to detonate prior to a missile impact in order to disrupt the molten jet of its shaped-charge warhead and feed additional metal in its path.

So did the T-90’s reactive armor and Shtora active protection system prove a sure-fire countermeasure verses long-range anti-tank guided missiles (ATGMs)?

In a word, no—but you would only know that if you followed the many less well publicized videos depicting the destruction or capture of T-90s by rebel and government forces.
Jakub Janovský has dedicated himself to documenting and preserving recorded armor losses in the Syrian Civil War for several years, and recently released a vast archive of over 143 gigabytes of combat footage from the conflict ranging from atrocities perpetrated by various groups to hundreds of ATGM attacks.

According to Janovský, of the thirty transferred to the Syrian Arab Army, he is aware of five or six T-90As being knocked out in in 2016 and 2017, mostly by wire-guided TOW-2A missiles. (Some of the knocked out tanks, to clarify, may be recoverable with heavy repairs.) Another four may have been hit, but their status after the attack as not possible to determine. Of course, there may be additional losses that were not documented, and there are cases where the type of tank involved could not be visually confirmed.

Furthermore, HTS rebels captured two T-90s and used them in action, while a third was captured by ISIS November 2017. On June 2016, Sham Front rebels knocked out a T-90 with a TOW-2. Drone footage taken afterwards shows smoke rising from the turret hatch, and reveals the T-90’s tell-tale Shtora dazzlers. Another video recorded on June 14, 2016, at Aleppo shows a T-90 pulling a sharp turn and racing for cover behind a building—possibly aware of an incoming TOW missile. However, the T-90 is struck in its side or rear armor. The tank explodes, scattering debris high into the air, but stills continues to roll behind cover.

Another T-90A was either hit by a Russian-built Konkurs (similar to the TOW) or the more powerful laser-guided AT-14 Kornet missile near Khanassar, Syria, wounding the gunner. The crew eventually abandoned the vehicle as a fire spread from the machine gun mount into the vehicle, where it began to cook off the 125-millimeter shells on the carousel-style autoloader. The placement of ammunition in middle of the tank alongside the crew, rather than a separate stowage compartment as in the M1, has long been a vulnerability of Russian tank designs.
Rebels, meanwhile, maintained two T-90s in an abandoned brick factory in Idlib province. In April 2017, of the rebel T-90As, reinforced with sandbags on its armor, apparently went on a rampage assisting rebel forces in recapturing the town of Maarden, according to Russian media. Later, one of the T-90As was recaptured by the government, and the other was knocked out—reportedly, by a T-72 tank using a kinetic sabot round in the side armor.
In October, ISIS captured a 4th Armored Division T-90A near al-Mayadeen in eastern Syria when it ventured alone into a sand storm. Then on November 16, 2017, ISIS ambushed a Tiger Force armored column and apparently blasted a T-90A’s turret clean off its hull and left to rot upside down in the desert. The crew was reportedly killed. However, pro-Assad media claims this was the T-90 captured earlier by ISIS, found to be inoperable, and then destroyed for propaganda purposes.

This not to say the T-90’s defensive systems never worked. In one remarkable incident recorded on July 28, 2016, a T-90 tank near the Mallah farms of Aleppo was struck by a TOW missile, but emerged apparently unscathed from the dust cloud thanks to its reactive armor. As the vehicle frantically scuttled away, the TOW crew smacked it with a second missile—which it apparently survived despite sustaining damage.

Janovský says he is not aware of T-90s being lost to shorter-range weapons, “since the regime rarely used T-90s in close combat, especially after two were captured.” The T-90 has in fact been “relatively successful” in Janovský’s opinion, despite losses due to “overconfidence and poor coordination with infantry, which has been a long term problem of the SAA.”
According to Janovský, the T-90’s most useful feature has actually proven to be its superior optics and fire control computer compared to earlier Russian tanks. “T-90s performed well when they had an opportunity to shoot at rebels from long distance or at night, when modern optics and fire-control computer proved to be a major advantage.” Indeed, the T-90A model began receiving French-built Catherine FC thermal imagers in the mid-2000s.

Of course a small number of T-90s was not going to have a great impact on a sprawling civil war that had been raging for years. However, Janovský still see lessons to be drawn from the situation. “The regime was also lucky that rebels never got any modern ATGM that has top attack mode—which would reliable kill T-90.” Examples such of top-attack weapons include the Javelin missile, and the TOW-2B.

“In my opinion, the major issue with T-90 (and most other modern tanks) is a complete lack of hard-kill Active Protection System [one that shoots missiles down], ideally with 360 degrees coverage, but 270 degrees should be minimum. This not only means that it is vulnerable to being disabled by cheap rocket propelled grenades in urban combat but also from Anti-Tank Guided Missiles fired from unexpected angle. When you consider the range of current ATGMs [typically two to five miles], it will be fairly regular occurrence that you get a side shot opportunity against attacking enemy tank from positions across from the of attacked location.”

Indeed, Russia is reportedly planning to upgrade its T-90As—which are currently less advanced than the T-90MS’s in service with the Indian Army—to a T-90M variant with new hard-kill active protection systems, upgraded reactive armor, and a more powerful 2A82 main gun. Ultimately, the losses in Syria show that any tank—whether T-90, M-1 or Leopard 2—is vulnerable on a battlefield in which long-range ATGMs have proliferated. Active protection systems and missile warning systems are vital to mitigate that danger—but so are careful tactical employment, competently trained crews, and improved cooperation with infantry to minimize exposure to long-range attacks, ward off ambushers, and provide extra eyes on possible threats.

Sébastien Roblin holds a Master’s Degree in Conflict Resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing, and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring. This piece was originally featured in 2018 and is being republished due to reader interest. 

Image: Wikipedia.

Russia’s Akula-class Submarine Is a True Shark

The National Interest - Fri, 23/07/2021 - 21:46

Sebastien Roblin

U.S. Navy, Arctic Ocean

The Soviet Union produced hot-rod submarines that could swim faster, take more damage, and dive deeper than their American counterparts.

Here's What You Need to Remember: Despite the Akula’s poor readiness rate, they continue to make up the larger part of Russia’s nuclear attack submarine force, and will remain in service into the next decade until production of the succeeding Yasen class truly kicks into gear.

The Soviet Union produced hot-rod submarines that could swim faster, take more damage, and dive deeper than their American counterparts—but the U.S. Navy remained fairly confident it had the Soviet submarines outmatched because they were all extremely noisy. Should the superpowers clash, the quieter American subs had better odds of detecting their Soviet counterparts first, and greeting them with a homing torpedo. However, that confidence was dented in the mid-1980s, when the Soviet Navy launched its Akula-class nuclear-powered attack submarines. Thirty years later they remain the mainstay of the Russian nuclear attack submarine fleet—and are quieter than the majority of their American counterparts.

Intelligence provided by the spies John Walker and Jerry Whitworth in the 1970s convinced the Soviet Navy that it needed to seriously pursue acoustic stealth in its next attack submarine. After the prolific Victor class and expensive titanium-hulled Sierra class, construction of the first Project 971 submarine, Akula (“Shark”), began in 1983. The new design benefited from advanced milling tools and computer controls imported from Japan and Sweden, respectively, allowing Soviet engineers to fashion quiet seven-bladed propellers.

The large Akula, which displaced nearly thirteen thousand tons submerged, featured a steel double hull typical to Soviet submarines, allowing the vessel to take on more ballast water and survive more damage. The attack submarine’s propulsion plant was rafted to dampen sound, and anechoic tiles coated its outer and inner surface. Even the limber holes which allowed water to pass inside the Akula’s outer hull had retractable covers to minimize acoustic returns. The 111-meter-long vessel was distinguished by its elegant, aquadynamic conning tower and the teardrop-shaped pod atop the tail fin which could deploy a towed passive sonar array. A crew of around seventy could operate the ship for one hundred days at sea.

Powered by a single 190-megawatt pressurized water nuclear reactor with a high-density core, the Akula could swim a fast thirty-three knots (thirty-eight miles per hour) and operate 480 meters deep, two hundred meters deeper than the contemporary Los Angeles–class submarine. More troubling for the U.S. Navy, though, the Akula was nearly as stealthy as the Los Angeles class. American submariners could no longer take their acoustic superiority for granted. On the other hand, the Akula’s own sensors were believed to be inferior.

The Akula I submarines—designated Shchuka (“Pike”) in Russian service—were foremost intended to hunt U.S. Navy submarines, particularly ballistic-missile submarines. Four 533-millimeter torpedo tubes and four large 650-millimeter tubes could deploy up to forty wire-guided torpedoes, mines, or long-range SS-N-15 Starfish and SS-N-16 Stallion antiship missiles. The Akula could also carry up to twelve Granat cruise missiles capable of hitting targets on land up to three thousand kilometers away.

Soviet shipyards pumped out seven Akula Is while the U.S. Navy pressed ahead to build the even stealthier Seawolf-class submarine to compete. However, even as the Soviet Union collapsed, it launched the first of five Project 971U Improved Akula I boats. This was followed by the heavier and slightly longer 971A Akula II class in the form of the Vepr in 1995, which featured a double-layer silencing system for the power train, dampened propulsion systems and a new sonar. Both variants had six additional external tubes that could launch missiles or decoy torpedoes, and a new Strela-3 surface-to-air missile system.

However, the most important improvement was to stealth—the new Akulas were now significantly quieter than even the Improved Los Angeles–class submarines, although some analysts argue that the latter remain stealthier at higher speeds. You can check out an Office of Naval Intelligence comparison chart of submarine acoustic stealth here. The U.S. Navy still operates forty-three Los Angeles–class boats, though fourteen newer Seawolf- and Virginia-class submarines still beat out the Akula in discretion.         

However, Russian shipyards have struggled to complete new Akula IIs, which are not cheap—one figure claims a cost of $1.55 billion each in 1996, or $2.4 billion in today’s dollars. The struggling Russian economy can barely afford to keep the already completed vessels operational. Two Akula IIs were scrapped before finishing construction and three were converted into Borei-class ballistic-missile submarines. As for the Akula II Vepr, it was beset by tragedy in 1998 when a mentally unstable teenage seaman killed eight fellow crewmembers while at dock, and threatened to blow up the torpedo room in a standoff before committing suicide.

After lingering a decade in construction, the Gepard, the only completed Akula III boat, was deployed in 2001, reportedly boasting what was then the pinnacle of Russian stealth technology. Seven years later, Moscow finally pushed through funding to complete the Akula II Nerpa after fifteen years of bungled construction. However, during sea trials in November 2008, a fire alarm was triggered inadvertently, flooding the sub with freon firefighting gas that suffocated twenty onboard, mostly civilians—the most serious recent incident in a long and eventful history of submarine disasters.

After an expensive round of repairs, the Nerpa was ready to go—and promptly transferred on a ten-year lease to India for $950 million. Redubbed the INS Chakra, it served as India’s only nuclear powered submarine for years, armed with the short-range Klub cruise missile due to the restrictions of the Missile Technology Control Regime. In October 2016, Moscow and New Delhi agreed on the leasing of a second Akula-class submarine, although it’s unclear whether it will be the older Akula I Kashalot or never-completed Akula II Iribis—though the steep $2 billion price tag leads some to believe it may be the latter. This year, the Chakra will also be joined by the domestically-produced Arihant class, which is based on the Akula but reoriented to serve as a ballistic-missile sub.

Today the Russian Navy maintains ten to eleven Akulas, according to Jane’s accounting in 2016, but only three or four are in operational condition, while the rest await repairs. Nonetheless, the Russian Navy has kept its boats busy. In 2009, two Akulas were detected off the East Coast of the United States—supposedly the closest Russia submarines had been seen since the end of the Cold War. Three years later, there was an unconfirmed claim (this time denied by the U.S. Navy) that another Akula had spent a month prowling in the Gulf of Mexico without being caught. The older Kashalot even has been honored for “tailing a foreign submarine for fourteen days.” All of these incidents have highlighted concerns that the U.S. Navy needs to refocus on antisubmarine warfare. In the last several years, Russia has also been upgrading the Akula fleet to fire deadly Kalibr cruise missiles, which were launched at targets in Syria in 2015 by the Kilo-class submarine Rostov-on-Don.

Despite the Akula’s poor readiness rate, they continue to make up the larger part of Russia’s nuclear attack submarine force, and will remain in service into the next decade until production of the succeeding Yasen class truly kicks into gear. Until then, the Akula’s strong acoustic stealth characteristics will continue to make it a formidable challenge for antisubmarine warfare specialists.

Sébastien Roblin holds a master’s degree in conflict resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring.

This article first appeared in 2017. It is being republished due to reader interest.

Image: Wikipedia.

The Russian Pipeline That Turned Into a Lightning Rod

Foreign Policy - Fri, 23/07/2021 - 21:26
How Nord Stream 2 made everyone in Washington mad at one another.

Kill the Tank: America’s Javelin Missile Is Second to None

The National Interest - Fri, 23/07/2021 - 21:23

Sebastien Roblin

Russia,

The U.S.-made FGM-148 Javelin is one of the premier portable anti-tank missile systems in the world.

Here's What You Need to Remember: In any case, the Javelin missile remains one of the United States’ most potent systems on the ground, and one that seems set to increase in capability and be deployed on a greater number of platforms Its presence, or absence, on battlefields around the world will remain both consequential and highly scrutinized.

The U.S.-made FGM-148 Javelin is one of the premier portable anti-tank missile systems in the world. It’s also an expensive piece of kit, with each missile typically costing more than the targets it eliminates.

Recommended: 8 Million People Could Die in a War with North Korea

Recommended: Why North Korea Is Destined to Test More ICBMs and Nuclear Weapons

Recommended: 5 Most Powerful Aircraft Carriers, Subs, Bombers and Fighter Aircraft Ever

Still, the infrared guided Javelin has proven itself in combat in Iraq, Afghanistan, and Syria and has reliable shtick that should work on virtually any tank out there—it hits them on the weak top armor. It’s also exposes its crew to less danger than the typical guided missile system. Because it’s such a lightweight system, it may end up being a first responder on the ground to emergencies that could be described as “massive, unexpected tank invasions”—a scenario the U.S. military could have faced during Operation Desert Shield, when it deployed light infantry to defend Saudi Arabia, and currently fears in the Baltics.

The Javelin is so effective that who the United States sells or gives Javelins to has become a political issue on more than one occasion. Within the U.S. military, the Javelin also looks set to transition from being purely an infantry system to being mounted on vehicles.

So How Does One Throw These Anti-Tank Spears (and Why Are They Powerful?)

The Javelin doesn’t look as sleek and deadly as its name would have you think—it resembles a clunky dumbbell slightly over one meter in length. Fortunately, you don’t need good looks to blow up a tank.

The Javelin’s Command Launch Unit—CLU—has a sophisticated infrared sensor with multiple viewing modes, including 4x optical zoom, a 4x green-lit thermal view, and a 12x narrow-vision zoom activated for targeting. The seeker in the missile even provides a fourth 9x thermal viewing mode. The CLU can therefore serve as a handy scanning device for the infantry. The thermal viewers on the Javelin needs to be cooled off to function well, which theoretically takes 30 seconds, but might take a bit longer if you’re in Baghdad and it’s a breezy 120 degrees at noon. The system also incorporates multiple safeguards to avert or abort accidental launch.

The CLU, when loaded with a missile, weighs in at 50 pounds (most of the weight comes from the missile), and can be fired from a crouch or even seated position. That’s a lot lighter than the wire-guided TOW or other long-range missiles that typically required a heavy tripod. Still, it’s not exactly something you’d want to run a marathon with.

Once the firer acquires a target, locks the infrared seeker on to it and pulls the trigger, the Javelin missile is ejected out of the CLU without using its rocket motor in a “soft launch” creating relatively little back blast. Missile launch back blast not only makes it easy for opposing forces to spot the launcher after firing, but can make launching while inside a confined space (a building) a deadly risk. So the Javelin’s small backblast is very handy for keeping the operator alive. Still, the launch does blow back some gas, so you don’t want to stand directly behind it.

Afterwards, the Javelin’s gunner must… actually, the gunner could play Candy Crush on their cell phone if they wanted to, because unlike most long-range anti-tank missiles, the Javelin is a fire-and-forget system and requires no further input after lunch. The Javelin crew is free to duck into cover and concealment, rather than being forced to remain fixed in place guiding the missile towards the target, as is necessary with Semi-Automatic Command Line-Of-Sight (SACLOS) systems such as the wire-guided TOW or laser-guided AT-14 Kornet.

After launch, a Javelin shoots forward horizontally for a second before its rocket motor ignites and it climbs up 150 meters into the air, known as a “curveball” shot. It’s quite a sight, as you can see in this video.

The missile’s infrared seeker, benefiting from gyroscopes and gimbels, makes adjustments using thrusters to ensure its trajectory leads it to plunge almost vertically onto the infrared signature it was locked onto.

A Javelin fired in this manner will strike the top armor of an armored vehicle, which is generally much thinner than the frontal or even side armor. The Javelin’s 127 millimeter shaped charge warhead is estimated to penetrate the equivalent of 600 to 800 millimeters of Rolled Hardened Armor (RHA), which is not particularly impressive, given that modern tanks now feature composite armor that is extra effective against such warheads. But that doesn’t really matter: it’s still more than enough to penetrate the top armor of anything out there—at least, as long as we don’t consider other defensive system.

One common defense which sometimes does reinforce top armor is explosive-reactive armor (ERA), a layer of explosive bricks covering a tank intended to prematurely detonate the shaped charges used by missiles.

However, the Javelin has a tandem charge warhead designed to defeat ERA using a ‘precursor’ charge at the front of the warhead to take out the local ERA brick, blasting open a gap through which the main warhead can hit the tank’s conventional armor.

The Javelin can also be fired in direct attack mode, useful for hitting targets that are too close for the top attack, or that benefit from top cover, like a bunker or cave entrance. The direct-fire mode could also be effective against low flying helicopters.

One of the Javelin’s few limitations is its range—2.5 kilometers. Though adequate for most combat situations, older missiles like the TOW or Kornet boast ranges of 5 kilometers or more.

Russia is also aware of the Javelin’s capabilities—and their latest tanks feature several countermeasures intended to defeat them. New Relikt and Mechanit ERA systems feature dual layers of radar-triggered ERA plates designed to defeat tandem charge warheads. The Shtora and the newer Afganit Active Protection Systems can also deploy ‘soft kill’ multi-spectral grenades and flares designed to obscure the tank from infrared seekers or divert them to other heat sources.

However, the latest infrared sensors have also improved in their ability to see through obscuring haze and distinguish flares from the original target. And “hard-kill” active defenses designed to shoot incoming missiles down would need to be able to shoot vertically above the tank to tackle a top-attack Javelin—which the new Afganit system on the T-14 tank, with launch tubes nestled at a horizontal angle under the turret, doesn’t seem capable of doing.

So would Relikt-style ERA and soft-kill infrared defenses work against the Javelin? There’s simply no way to know for sure, unless Moscow were suddenly to invite Washington to test its anti-tank missiles against its best tanks in a friendly competition. But given that relations are too frosty for the United States to participate in Russia’s annual tank biathlon, don’t count on that happening.

So Do They Actually Work?

The Javelin was designed in the 70s and 80s, when the leaders of the U.S. military had nightmares about being overrun by endless hordes of Soviet tanks—a fear worsened by the generally poor performance of the M47 Dragon missile in use at the time.

However, the Javelin finally entered service with the U.S. military in 1996 after the Cold War had ended, and first saw action in 2003 during the U.S. invasion of Iraq.

At the time, the United States was not able to deploy troops in Northern Iraq by land, so it instead air dropped Special Forces and paratroopers that fought alongside Kurdish peshmerga fighters. In the Battle of Debecka Pass, a force of a few dozen Special Forces operators and a larger peshmerga contingent engaged and destroyed an Iraqi mechanized company of over a hundred soldiers. The U.S. force had just 4 Javelin launch units. Nineteen Javelins missiles were fired, seventeen of which hit, destroying two T-55 tanks, eight MT-LB armored personnel carriers, and several trucks. Reportedly, all of the Javelins shots were made at 2,200 meters range or further—close to or exceeding the official maximum range of the weapon—and one hit was even reported at 4,200 meters.

Javelins knocked out several more tanks during the Iraq War, including Type 69 tanks and Lion of Babylon T-72s, none of them cutting edge types. As the conventional phase of the conflict ended, the Javelins main duty soon came to ‘sniping’ smaller, softer targets. The Javelin’s precise targeting scope was ideal for spotting and taking out at long ranges insurgent heavy weapons teams armed with machine guns, missiles, or recoilless rifles, as well as the occasional pickup truck. Other weapons systems available to the infantry lacked the combination of long range and precision.

The irony of using Javelins to destroy pickup trucks and machine guns is that the roughly $80,000 Javelin missiles cost considerably more than the weapon systems they are destroying. This has reportedly has led U.S. forces to at times hold back on using the weapon in Afghanistan. Though considered a ‘lighter’ weapon than the vehicle-mounted TOW missile, significantly larger numbers of TOW missiles have been expended since 2003.

However, given that the United States spends dozens or hundreds of thousands of dollars operating expensive jet fighters dropping pricy smart missiles, or deploying large numbers of ground troops just in order to take out a few insurgents at a time, the relative costs of using Javelins as a sort of heavy sniping weapon may not be that absurd. It’s less likely to cause collateral damage than calling in an artillery strike or dropping a large, laser-guided bomb. And if that strike eliminates in a timely manner an active threat endangering the lives of friendly troops, it could save lives.

One last note of caution when evaluating the Javelin: though it may be a top-tier anti-tank weapon, it has not yet been used in combat against a modern tank, which is not true of the TOW or Kornet missile.

The Future of the Javelin

The Javelin has undergone quite a few upgrades since initial deployment in 1996—let’s take a look at three of the most important ones.

Given that the Javelin has been used primarily to hit soft targets and structures, a new version of the Javelin warhead with a deadlier blast fragmentation has been introduced, designated the FGM-148F. This new warhead is supposedly just as effective against tanks, and no costlier than its predecessors.

The Army has also been funding the development of a Lightweight Command Launch Unit. The new launch system would supposedly be 70% smaller, weigh almost half as much, and feature upgrades including modernized electronics, a new laser pointer, a high-definition color camera, and IR sensors with improved range and resolution.

Finally, a new extended range Javelin has been recently tested capable of hitting targets up to 4.5 kilometers away. This is significant, as one of the chief rationales for keeping the TOW missile as the standard vehicle-mounted anti-tank weapon was its longer range of nearly 5 kilometers. A long-range Javelin would seem to be superior.

Vehicle-mounted Javelins are now in the works. Back in the 90s, the Army reportedly experimented with a Javelin-toting ‘Warhammer’ Bradley but didn’t pursue the project. Recently, however, the U.S. Army has announced it is looking to upgrade half of its standard Stryker wheeled APCs to carry Javelins. (The other half would receive 30 millimeter autocannons). Previously, only specialized M1134 Strykers equipped with TOW launchers had any anti-tank capability.

The move to equip middle-weight personal carriers with effective anti-tank missiles mirrors Russia’s own moves to install deadly Kornet anti-tank missiles on the Epoch turret used in its new families of Bumerang, Kurganets and T-15 Armata (not the T-14) armored personnel carriers.

The Javelin would represent a more flexible weapon than the older TOWs, as the launch vehicle can move immediately out of danger after firing the Javelin. If the upgrade is implemented, even the United States’ lighter armored vehicles will be bristling with anti-tank firepower and the ability to launch precision guided missile attacks.

One interesting question is what will happen to the TOW missile, which is considered a heavier asset assigned to specialized anti-tank platoons. The newer TOW-2B Aero has a top-attack kinetic warhead with a wireless guidance system so that the launch unit is no longer literally attached to the missile—and the operator doesn’t have to remain immobile, though he or she will still need to guide the missile onto the target.

Though the TOW may have lost its advantage in range, it is optically guided rather than infrared-guided and also costs less at around $59,000. Thus, the U.S. military might keep both weapon systems so that no single system of jamming or countermeasures would be effective, and to retain a less costly long-range missile for fighting the kind of insurgent targets it continues to face in Afghanistan and Iraq.

The Political Battlefield

The Javelin is one the U.S. military’s most effective, man-portable weapon systems. They’re available to frontline infantry squads in the Marines and Army, and typically a few are stowed inside vehicles in mechanized units.

The United States has sold Javelins both to many NATO countries, including France and the United Kingdom, allies in the Middle East such as Saudi Arabia and the United Arab Emirates, and to Asian-Pacific countries including Australia, Indonesia and Taiwan.

Because of the Javelin’s capabilities, the sale of Javelins is loaded with both political considerations as well as military significance.

For example, the United States has provided 120 Javelin launch units to Estonia and 260 to Lithuania. If the Baltic states were invaded by Russian armor—not truly a likely event, but one much worried about because the small NATO countries would be hard to defend—light infantry wielding Javelins would basically serve as the Baltics’ first line of defense on the ground until NATO mobilized.

When Russia provided military support to separatists in Ukraine, columns of Russian tanks were instrumental in turning back Ukrainian Army offensives and seizing government strongpoints, notably the Donetsk International Airport in January 2015. For hawks like Senator John McCain pushing for the United States to provide direct military aid to Ukraine, Javelin missiles were cited as a key weapon system that might have reversed the Ukrainian Army’s fortunes on the battlefield—and one far more practical to put into action than a main battle tank or jet fighter.

However, providing missiles of undeniably American origin would also have sharply escalated the conflict between the United States and Russia. Unlike the widely exported TOW missiles or various Russian weapon systems, there was no credible way for such weapons to end up in Ukrainian hands without American authorization. Thus: no Javelins for Ukraine.

Theoretically, the same policy applies to various Syrian rebel groups being supplied arms by the United States, including Kurdish groups opposed by Turkey. The United States acknowledges supplying them with older TOW missiles, not Javelins.

But then we have images like this.

In February of this year, Kurdish forces near El Shadadi are seen firing a Javelin missile that destroyed truck-born IED hurtling towards their lines, destroying it before it could hit friendly forces. You can see the action in this clip.

The report of Javelin armed Kurds caused quite a stir, even while the U.S. government insists that it is not arming the rebels with Javelins. This may be disingenuous, or it could be that the Javelin came from a U.S. Special Forces unit operating alongside the Kurds, and the provisioning was ad hoc rather than part of a systematic program. Another possibility is that the Javelin came out of the stocks of a Middle Eastern country sympathetic to the rebels.

The Turkish Land Forces have lost nearly a dozen Patton tanks this year to anti-tank missiles wielded both by ISIS and Kurdish fighters, whom it also opposes. So far, it doesn’t seem any have been hit by Javelin missiles, however.

In any case, the Javelin missile remains one of the United States’ most potent systems on the ground, and one that seems set to increase in capability and be deployed on a greater number of platforms Its presence, or absence, on battlefields around the world will remain both consequential and highly scrutinized.

Sébastien Roblin holds a Master’s Degree in Conflict Resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing, and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring. This article first appeared several years ago.

Image: Flickr.

The Army's World War II Panzer Killers Were The Real Deal

The National Interest - Fri, 23/07/2021 - 21:19

War Is Boring

Tanks,

But don’t dare call them tanks. These were tank-destroyers.

Here's What You Need to Remember: The tank-destroyer force was the Army’s response to the wild successes of German armor in Poland and France in 1939 and 1940. Panzer divisions would concentrate more than a hundred tanks on a narrow front, overwhelming the local anti-tank weapons of defending troops and rolling deep into enemy lines.

During the 1940s, the U.S. Army developed a special weapon to counter the tanks of the German Wehrmacht. Most of these vehicles had the hull of a Sherman tank and a turret with a long-barrel cannon.

But don’t dare call them tanks. These were tank-destroyers.

After the war, the U.S. Army concluded tank destroyers were a waste of time. Official histories excoriated the failure of the program.

But a look at historical records shows that tank destroyers actually did their job well.

The tank-destroyer force was the Army’s response to the wild successes of German armor in Poland and France in 1939 and 1940. Panzer divisions would concentrate more than a hundred tanks on a narrow front, overwhelming the local anti-tank weapons of defending troops and rolling deep into enemy lines.

In 1941, the Army concluded that it needed mobile anti-tank units to intercept and defeat German armored spearheads. Towed anti-tank guns took too long to deploy on the move and it was difficult to guess where the enemy would concentrate for an attack. Instead, self-propelled anti-tank battalions would wait behind friendly lines.

When the German armor inevitably broke through the infantry, the battalions would deploy en masse to ambush the advancing tank columns.

The Army didn’t intend for its own tanks to specialize in defending against enemy panzers. The new armor branch wanted to focus on the same kind of bold armored attacks the Germans were famous for.

The Army tested the concept out in war games at Louisiana in September 1941. Tank-destroyers performed extremely well against tanks — perhaps because, as the armor branch alleged, the “umpire rules” were unfairly tilted in their favor. Tanks could only take out anti-tank units by overrunning them, rather than with direct fire.

M10 and M36 Tank Destroyers 1942-53 (New Vanguard)

With the support of the Army’s chief of training and doctrine Lt. Gen. Leslie McNair, tank-destroyers became their own branch in the army, just like armor and artillery already were. A tank-destroyer center began training units at Fort Hood, Texas. Fifty-three battalions of 842 men each initially mobilized, with plans to grow the force to 220 battalions.

Each battalion had 36 tank-destroyers divided into three companies, as well as a reconnaissance company of jeeps and armored scout cars to help ferret out the disposition of enemy armor so that the battalions could move into position. The recon company also had an engineer platoon to deal with obstacles and to lay mines.

The first tank-destroyer units made do with hastily improvised vehicles. The M6 was basically an outdated 37-millimeter anti-tank gun mounted on a three-quarter-ton truck.

The M3 Gun Motor Carriage, or GMC, was an overloaded M3 halftrack — a vehicle with wheels in the front and tracks in the rear — toting a French 75-millimeter howitzer on top. Both types were lightly armored and lacked turrets.

Scooting and shooting in Tunisia

Though some M3 GMCs resisted the Japanese invasion of The Philippines, tank-destroyer battalions first saw action in the deserts of North Africa starting in 1942.

Their most important engagement pitted the M3s of the 601st Tank Destroyer Battalion against the entire 10th Panzer Division in the battle of El Guettar in Tunisia early in the morning on March 23, 1943.

Deployed in defense of the 1st Infantry Division just behind the crest of Keddab ridge, the 601’st 31 gun-laden halftracks moved forward and potted off shots at the panzers as they rolled down Highway 15, then scooted back and found new firing positions. They were bolstered only by divisional artillery and a minefield prepared by their engineers.

Two companies from the 899th Tank Destroyer Battalion reinforced them at the last minute, one of them suffering heavy losses while approaching.

The panzers advanced within 100 meters of the 601st’s position before finally withdrawing, leaving 38 wrecked tanks behind. However, the 601st had lost 21 of its M3s and the 899th lost seven of its new M10 vehicles.

The heavy losses did not endear the tank-destroyers to Allied commanders. Gen. George Patton said the tank-destroyers had proved “unsuccessful.”

In fact, the battle of El Guettar marked the only occasion in which U.S. tank-destroyers were used in the manner intended — deployed as an entire battalion to stop a German armored breakthrough concentrated on a narrow front.

The German army remained largely on the defensive in the second half of World War II, and failed to achieve armored breakthroughs like those in Poland, France and Russia. As a result, the U.S. Army scaled back the number of tank-destroyer battalions to 106. Fifty-two deployed to the European theater and 10 to the Pacific.

Another problem was that tank-destroyer doctrine presupposed moving into ambush positions after the German tanks had already overrun defending infantry. In practice, nobody wanted to consign the infantry to such a fate, so tank-destroyers deployed closer to the front line for forward defense.

The first proper tank-destroyer was the M10 Wolverine, which featured the hull of the M4 Sherman tank and a new pentagonal turret. General Motors and Ford produced 6,400 M10s.

The Wolverine mounted a long-barrel high-velocity 76-millimeter gun thought to have good armor-piercing performance. However, it had less effective high-explosive shells for use against enemy infantry — at least, compared to the 75-millimeter shells fired by Sherman tanks.

Naturally, tank-destroyer units carried more armor-piercing shells than high explosive shells, while the reverse was true in tank units.

Germany, Italy, Japan and Russia all fielded tank-destroyer vehicles, as well. Some were simply anti-tank guns mounted on a lightly-armored chassis, such as the Marder and Su-76, while others were heavily-armored monstrosities with enormous guns, such as the Jagdpanther and the JSU-152.

None had turrets. These were seen as expensive luxuries unnecessary for the defensive anti-tank role. American doctrine envisioned a more active role, thus the turrets. However, the M10’s hand-cranked turret was so slow it took 80 seconds to complete a rotation.

While Sherman tanks had three machine guns, the M10 had just one pintle-mounted .50-caliber machine gun that could only be fired if the commander exposed himself over the turret. Movie star Audie Murphy won the Medal of Honor when he repelled a German assault near Colmar, France using the machine gun of a burning Wolverine.

The M10’s biggest deficit lay in armor protection. The Wolverine had an open-top turret, meaning the crew was exposed to shrapnel and small-arms fire from above. Its armor was also thinner overall than the Sherman’s was.

These shortcomings had their rationales. Even the heavier armor on a Sherman could be reliably penetrated by the long 75-millimeter guns of the standard German Panzer IV tank, let alone the more potent guns on German Panther and Tiger tanks.

Therefore, the Wolverine’s inferior protection made little difference against those vehicles. It did leave the M10 more vulnerable than the Sherman to lighter anti-tank weapons, but these were no longer very common.

Likewise, the M10’s open top gave the crew a better chance of spotting the enemy tanks first — usually the factor determining the winner of armor engagements. It would rarely be a weakness when only fighting tanks. Of course, it would be a problem when engaging enemy infantry and artillery, but that was meant to be the Sherman’s job.

The M10 fully replaced the M3 GMC by 1943, but its superior gun proved less of a panacea than the Army had hoped. The Sherman tank’s short 75-millimeter gun was unable to penetrate the frontal armor of German Tiger and Panther tanks, which accounted for roughly half the Wehrmacht tank force by 1944.

The Wolverine’s 76-millimeter gun supposedly could — but experience in combat showed it failed to penetrate the frontal armor of Germany heavy tanks at ranges greater than 400 meters. A problem known as shatter-gap meant that the tip of the 76-millimeter shell deformed when it hit face-hardened armor plate at long distances, causing it to explode before penetrating.

The tank-destroyer’s inability to take out the best enemy tanks heightened the branch’s generally negative reputation.

In the Italian campaign that began in 1943, German armor was rarely encountered in large numbers, and M10s were often asked to provide fire support for the infantry. They were even used as indirect-fire artillery. Though firing lighter shells, a tank-destroyer battalion had twice as many gun tubes as 105-millimeter artillery battalion did, and longer range.

Instead of holding tank-destroyers in corps reserve, it became standard practice for commanders to attach a tank-destroyer battalion to front-line infantry divisions. Rather than fighting as unified battalions, companies or platoons of tank-destroyers would detach to provide direct support to infantry and combined arms task forces. For every anti-tank round the tank-destroyers fired, they fired 11 high-explosive rounds.

Doctrinaire officers complained that the M10s, vehicles in most respects similar to a tank, were being employed as if they were tanks. Gen. Omar Bradley suggested that the Army should instead use heavy towed anti-tank guns, which could be more effectively concealed in dense terrain.

As a result, half of the battalions converted to towed, 76-millimeter M5 guns similar in effectiveness to the M10’s own gun. These supplemented the companies of lighter 57-millimeter guns integrated in each infantry regiment.

As tank-destroyers were drawn increasingly into infantry support roles that exposed them to artillery and infantry fire, their crews piled sandbags on top of them in order to detonate Panzerfaust anti-tank rockets. Other field-modifications included additional machine guns and even armored panels covering the tank-destroyers’ vulnerable open tops.

The arrival of new Sherman tanks in 1944 sporting their own 76-millimeter guns further blurred the distinction between tank-destroyers and tanks. There were now Sherman tanks just as effective at tank-hunting.

Busting panzers in Normandy

Tank-destroyers fought in two major engagements in Normandy in addition to numerous smaller skirmishes. On July 11, 1944, three panzer battalions of the Panzer Lehr Division, supported by mechanized infantry, launched a counterattack to relieve Allied pressure on the city of Saint Lo.

The two wings of the attack ran into dispersed M10 platoons of the 799th and 823rd Tank Destroyer Battalions near the village of Le Désert, supported by abundant air power. In a series of sharp engagements in the claustrophobic hedgerow corridors of the Normandy countryside, the Panzer Lehr division lost 30 Panther tanks.

Three weeks later, four panzer divisions attempted to pinch off the Allied breakout from Normandy in the Mortain counteroffensive. The Panzers ran into the towed guns of the 823rd Tank Destroyer Battalion. In the dense early morning fog of the opening engagement, the 823rd was forced to fire at the muzzle flashes of equally-blind Panther tanks.

Unable to pull back the entrenched weapons, the 823rd lost 11 guns but succeeded in taking out 14 tanks. Self-propelled tank-destroyer battalions rushed into help. U.S. forces held Mortain and the German armies in northern France collapsed into a full retreat.

New tungsten-core, high-velocity, armor-piercing ammunition began to arrive for the 76-millimter guns in September 1944. The new rounds could reliably pierce German armor at range. Each Wolverine received only a few rounds of the rare ammunition, but it at least gave them a fighting chance at penetrating the German heavies.

Eleven tank-destroyer battalions were designated “colored” units. They were manned by African-American enlisted men and, mostly, white officers. The third platoon of the 614th Tank Destroyer Battalion, equipped with towed guns, won a Distinguished Unit Citation for beating back a German infantry counterattack after losing three of its four towed guns.

Its commander, Lt. Charles Thomas, stayed to direct the fight even after his M20 scout car was knocked out and his legs were raked with machine-gun fire. He was awarded a Distinguished Cross that was upgraded to a Medal of Honor in 1997. By contrast, the 827th Tank Destroyer Battalion was infamously plagued by poor leadership.

M10s and M18s also saw action in the Pacific, serving notably at Kwajalein Atoll, Peleliu, The Philippines and Okinawa. Facing only limited enemy armor, they specialized in destroying Japanese pillboxes, though some apparently took out tanks in the Battle of Saipan.

More than 1,600 M10s would also serve in Royal Artillery anti-tank regiments of the British Army. Almost two-thirds were eventually given extra armor plates and up-gunned with the superior 17-pound anti-tank gun, and were known as M10C Achilles. The 17-pound — also 76 millimeters in caliber — was a reliable Tiger- and Panther-killer. British doctrine treated the Achilles as a fast-deploying defensive weapon rather than as an active tank-hunter.

The Achilles acquitted themselves well. In a battle near Buron, France, they knocked out 13 Panzer IV and Panther tanks for the loss of four of their number. They often escorted heavily-armored Churchill tanks that lacked adequate anti-tank firepower.

Some 200 Wolverines served in the Free French Army, where they were well-liked. Famously, the French M10 Sirocco fired across the two-kilometer-long Champs-Élysées boulevard of Paris from near the Arc de Triomphe to knock out a Panther tank at the Place de la Concorde.

Even the Soviet Union operated 52 M10s received through Lend Lease. These served in two battalions that saw action in Belarus.

The new blood

In 1944, two additional tank-destroyer types entered service. Buick designed the M18 Hellcat for pure speed. Lightweight and powered by a radial aircraft engine, it could zoom along at 50 miles per hour in an era that tanks rarely exceeded 35 miles per hour.

However, it had only an inch of armor and was armed with a 76-millimeter M1 gun that was little more effective than that on the M10. Several units in Italy refused the upgrade to the M18 — armor was more important than speed in the cramped mountainous terrain. But the M18 was popular in Patton’s hard-charging 3rd Army.

While speed is useful for getting armored vehicles where they’re needed, accounts differ as to whether it provided the M18 much benefit at the tactical level. An Army study concluded it was unimportant in tactical combat. Other sources maintain the Hellcat’s speed enabled it in using hit-and-run tactics.

The M36 Jackson — or Slugger — on the other hand, had the hull of the M10 with additional armor and finally upgraded the armament to a heavy 90-millimeter gun. Not only were the heavy shells effective Tiger- and Panther-killers at long ranges — one once knocked out a Panther nearly four kilometers away — but they were significantly more effective against infantry.

2,324 were converted by the end of the war from various M10 and M4A3 vehicle hulls.

The new tank-destroyers acquitted themselves well in combat. In the Battle of Arracourt, two platoons of Hellcats — eight in total — from the 704th Tank Destroyer Battalion moved swiftly into ambush positions behind a low ridge on a foggy day, only their turrets poking over the rise.

When a battalion of Panther tanks from the 113th Panzer Brigade entered their sights, they knocked out 19 for the loss of three of their own number. At the Siegfried Line, M36s excelled at knocking out fortifications and helped beat back Tiger tanks that had decimated Shermans of the 9th Armored Division.

The Battle of the Bulge, a massive German counteroffensive in the frozen Ardennes forest, was the swan song of U.S. tank-destroyers. The Hellcats of the 705th Tank Destroyer Battalion helped the 101st Airborne repel German armored assaults at Bastogne.

A detached platoon of M18s escorting Team Desobry helped take out 30German tanks in Noville. M36 Jacksons of the 814th Tank Destroyer Battalion took 50-percent casualties in a delaying action at Saint Vith, knocking out 30 Panther tanks in the process.

The towed tank-destroyer battalions didn’t fare so well. Several battalions had to abandon their guns in the face of the German advance. Others got stuck in the mud and snow. While M10s of the 644th Tank Destroyer Battalion destroyed 17 tanks in two days in the ill-fated defense of Elsenborn ridge, the towed guns of the 801st fighting in the same battle lost 17 guns.

Of the 119 tank destroyers lost in the Battle of the Bulge, 86 were towed guns. Meanwhile, the tank-destroyers claimed 306 enemy tanks. In January 1945, it was decided to re-convert the towed units to self-propelled battalions.

By the end of the war, the writing was on the wall for the tank-destroyer — particularly when the first of the early M-26 Pershing tanks armed with the same 90-millimeter guns as on the M36 began to see action in early 1945.

Tank-destroyers were pretty much just tanks with inferior armor and better guns. Contrary to doctrine, commanders in the field asked them to perform most of the same tasks as regular tanks. Why invest in a whole separate branch of the army and different class of vehicles when you could simply give tanks the same gun?

Just three months after the end of World War II the Army disbanded the tank-destroyer branch. While the U.S. military did develop a few more specialized anti-tank vehicles, such as the M56 ONTOS, Army doctrine would go on to assert “the best means of taking out a tank is another tank.”

World War II was not quite the end of the line for U.S. tank destroyers. The M36 Jackson and its 90-millimeter gun were hastily called back for use in the Korean War five years later to counter North Korean T-34/85 tanks.

Surviving tank destroyers were resold all over the world. M10s and M18s saw action with the Nationalist army in the Chinese civil war. Wolverines cropped up in the Arab-Israeli conflict and Pakistani M36s battled Indian tanks in 1965. Croatia and Serbia used M36s and M18s in the Yugoslav civil war of the early to mid-1990s. Yugoslavia even deployed M36s as decoys against NATO airstrikes during the Kosovo War. Upgraded M18s remain in Venezuelan service today.

The shortcomings of U.S. tank destroyers are clear. They were intended to fight in a specific context that largely failed to materialize. They had inferior armor protection. With the exception of the M36, they weren’t reliably capable of taking out the scariest enemy tanks.

Post-war Army historians roundly lashed them for these shortcomings. Yet here’s the funny thing. Operational records show that the tank-destroyers actually rocked.

Active, self-propelled tank-destroyer battalions were judged to have killed 34 tanks each on average, and about half as many guns and pillboxes. Some units, such as the 601st, reported more than 100 enemy tanks destroyed. This led to an average kill ratio of two or three enemy tanks destroyed for every tank-destroyer lost.

The ultra-lightly-armored M18, with its unexceptional gun, had the best ratio of kills to losses for any vehicle type in the Army!

Why? Ultimately, it may come down to how tank-destroyers were employed, even though it was not the manner intended by Army strategists. While Sherman tank units sometimes embarked on risky assaults and unsupported rapid advances, tank-destroyers usually deployed in support of combined arms task forces with infantry.

This cooperation with friendly forces meant they showed just where they needed to be, spotted the enemy first and got off the first shot. And being the first to shoot usually determined the outcome of armored engagements in World War II, regardless of the quality of the vehicles involved.

Tank-destroyers also taught the Army not to over-specialize. There was no need for multiple classes of tanks that were strong in one respect and weak in another. The post-war concept of the main battle tank embraced this idea to the fullest.

As such, the U.S. tank destroyer branch constitutes one of the most curiously successful failures in U.S. military history.

This article originally appeared at War is Boring in 2016.

Image: Wikimedia Commons

In World War I, Even Animals Needed to Wear Gas Masks

The National Interest - Fri, 23/07/2021 - 21:13

James Simpson

History, Europe

During World War I, more than 90,000 soldiers died on all sides from gas attacks, which debilitated many more.

Here's What You Need To Remember: Horses often chewed through the canvas bags after mistaking them for feed. They were still vulnerable to skin blistering during mustard gas attacks and irritation from eating contaminated feed. Some cavalry horses had their own goggles to protect their eyes during chlorine gas attacks, but issues with fogging limited the use of goggles

There was nothing more terrifying in the trenches than the call of a gas attack — “GAS! GAS!” This warning cry sent men scrambling for their masks as the poisonous fog enveloped them. Soldiers succumbed to the strangling effects of chlorine, phosgene and mustard gas for years as the stalemated armies searched for news ways to defeat each other.

During World War I, more than 90,000 soldiers died on all sides from gas attacks, which debilitated many more. And it wasn’t just human combatants who suffered — many military working animals died from chemical weapons.

Take the most famous canine hero of the war, Sergeant Stubby of the 102nd Infantry Regiment, American Expeditionary Forces. The most decorated dog of the war earned many of his accolades from alerting his human comrades to incoming gas. A dog’s nose can be tens of thousands of times more sensitive than a human’s — which makes canines useful detectors of explosives, drugs and even cancer.

Stubby’s strong response to poison gas had its roots in an earlier close call. During that attack, mustard gas sealed his eyes shut with viscous mucous and he barely moved for days. It was an undoubtedly traumatic experience that taught Stubby all he needed to know. After his recovery, Stubby went on to save human lives because he understood the danger.

Stubby wasn’t the only dog left with a fear of this deadly new weapon. Rags — a mongrel with the U.S. 1st Infantry Division — fell foul of a German gas attack, as too did Tommy, a German Shepherd in service with the British Expeditionary Force.

Gas threatened the lives of all military working animals on the Western Front. The death or immobilization of these animals meant curtailing their enormous and unique contributions to the war effort.

However, there was one other tiny gas-detecting hero on the Western Front — the slug. Slugs were far more effective than dogs at detecting incoming mustard gas attacks. The U.S. Army was the first to discover the slug’s life-saving secret. Three times more sensitive than humans, slugs reacted to mustard gas at one particle per 10-12 million. They would compress their bodies and temporarily stop breathing, alerting soldiers to the danger and giving them enough time to pull on their gas masks.

What’s more, thanks to their natural abilities, slugs would actually survive the attacks unscathed — which is more than could be said for every other animal on the Western Front.

A beastly army

More than eight million horses, mules and donkeys and a million dogs died in World War I. Everyone knows the enormous human cost of the conflict, but it is easy to forget the fates of the million of animals that supported the war on all sides. Animals were important companions and workers to the soldiers at the front, and like their human compatriots they needed protection from the perils of chemical warfare.

Pack animals carried supplies and weapons on the front and rear lines. The railways that carried the millions of tons of food and ammunition to the rear were frequently several miles away, so horses, mules and donkeys bridged the gap even after engineers set up light railway and automobile supply lines. (The Germany army would remain majority horse-drawn through World War II.)

Between 1916 and 1918, gas hospitalized 2,200 horses and killed 211, mostly because logistical uses limiting their exposure to the more dangerous areas at the front.

The Germans used some 30,000 dogs on the Western Front, and the Entente kept around 20,000. Some dogs pulled heavy machine guns on trolleys, others used their keen sense of smell and hearing for sentry and scout work. Their small size helped them slip over and between trenches to deliver messages, shuttle medical supplies or lay down communication wires.

In a less formal way, dogs improved morale within the trenches by hunting rats and acting as companions to troops in miserable conditions. Cats also performed well in this role.

Homing pigeons carried out a crucial mission in the conflict. Carrier pigeons were the most reliable communications tool in the war. Around 100,000 birds carried messages back and forth from the front with a success rate of more than 95 percent. They were so important as messengers that pilots would even carry them to call home if they found themselves stranded behind enemy lines. To counter the pigeons, the Germans trained hawks to hunt them and retrieve their messages.

The front lines were hard enough for their human masters, but the animals were acutely sensitive to chemical warfare. They typically received less food than the soldiers and worked to exhaustion. They didn’t have the autonomy of their human comrades, either.

In a gas attack, troops had to save their own lives before they could cover up their more vulnerable animal brethren. And when it came to covering up, all sides of the war attempted to protect their vital animal assets.

Animal gas masks

Before animals received customized gas masks, many soldiers simply attached human masks. Troops wrapped straps around the noses of pack animals, or squeezed dogs’ faces into the soft baggy masks they used for themselves. This caused some problems. The shallow covering of the human mask could not protect a dog’s sensitive ears. For horses, mules and donkeys, the distance between their eyes and nose left some blinded during poison gas attacks.

Birds presented an even bigger problem — how do you fit the large human respirator onto a small bird?

The answer was customization.

The obvious answer for birds was to fit the respirator onto the bird’s carrier. The Germans used a wooden box with filters as a portable option, and fitted their trenches with larger steel lofts to house birds when on the front. On the whole, however, pigeons proved resistant to all but the deadliest of gases and continued their critical flights in even the most awful conditions.

Horses’ eyes, like pigeons, proved resistant to tear gas and other irritants. So initial efforts simply focused on protecting their respiratory systems. The British fitted their horses with nose plugs — horses are natural nose-breathers, so handlers stuffed their noses with gauze and pinned it in place. But it was painful and time-consuming.

So the Army found inspiration from existing technology — the equine feedbag attached to the horses’ heads. Both the Germans and British armies developed a five-inch by 14-inch flannelette and cheesecloth bag soaked in filtering chemicals fitted around a horse’s nose. But this afforded limited protection.

Horses often chewed through the canvas bags after mistaking them for feed. They were still vulnerable to skin blistering during mustard gas attacks and irritation from eating contaminated feed. Some cavalry horses had their own goggles to protect their eyes during chlorine gas attacks, but issues with fogging limited the use of goggles. As a result, exposure to the more dangerous gases left horses blinded alongside their human comrades.

Dogs had their own gas masks, too. Many of these early masks simply restitched the goggles and respirator from the human mask and fitted the apparatus to a canvas bag or sock that wrapped around the dog’s neck. This protected the entire head from exposure.

Canines, like humans, are susceptible to the effects of tear agents and needed nasal and oral protection. The new contraption protected their sensitive ears, too. This, and the space to allow their jaws to open, were essential if dogs were to continue working during an attack.

To protect Sergeant Stubby, his owner John Robert Conroy of the 102nd Infantry Regiment bought a French canine gas mask. The U.S. Army would not begin work on its own mask until 1926, but the Germans, French and British had experimented with applying existing human masks to their dogs early into the war.

However, Stubby’s mask was a poor fit for the thick bull terrier’s head. With the help of a French officer, Conroy made a new mask that fit the dog better and trained him to not only leave it on, but to retreat to the safety of the trench’s bunker.

Dog handlers had it easy compared to the pack animal operators. While dogs could be trained to calmly sit still while their handlers strapped and tied the mask to their animal, soldiers had to restrain mules with ropes. But saving these pack animals from gas attacks allowed them to continue to deliver critical supplies to the front.

Gas mask development continued into the interwar years with significant development in human, equine and canine gas mask development before World War II.

The horrors of chemical warfare have thankfully yet to be repeated on such a devastatingly similar scale, but the experience has allowed militaries worldwide to protect even their most vulnerable service members from harm.

This first appeared earlier and is being reposted due to reader interest.​

Image: Wikipedia.

What in the World?

Foreign Policy - Fri, 23/07/2021 - 21:10
This week in FP’s international news quiz: Olympics obstacles, a spyware scandal, and a bold quarantine escape attempt.

Why Is Everyone Going to Iceland?

Foreign Policy - Fri, 23/07/2021 - 21:10
How Reykjavik successfully managed the pandemic and brought tourism back.

Glock 42: This Small Pistol Packs a Huge Punch

The National Interest - Fri, 23/07/2021 - 21:08

Kyle Mizokami

Glock,

In the right hands, the Glock 42 pistol could conceivably become as deadly as its larger caliber brethren.

Here's What You Need to Remember: The smallest Glock, it is also suitable for whom concealability is a major purchase factor. While not for everyone, the combination of Glock’s pistol platform and John Browning’s small automatic caliber is still a compelling choice for users who combine both skill and discretion.

A combination of the successful Glock pistol design and a caliber invented by armsman John Moses Browning, the Glock 42 is certainly worth taking a look at.

The pistol combines the Austrian gun manufacturer’s gun operating system with the .380 ACP pistol cartridge. The result is both a pistol for concealed carriers who desire a low recoil pistol and the smallest pistol in Glock’s lineup.

Austrian gun manufacturer Glock has taken a tree-like approach to its pistol lineup, with the original Glock 17 9-millimeter pistol the trunk each major caliber it forays into a branch. The company will typically introduce the full-sized Glock in a new caliber, then quickly follow with compact, sub-compact, and competition-sized pistols to round out the caliber offering.

Unlike other branches, like the .45 ACP and the .40 Smith & Wesson, the .380 ACP branch of the Glock tree is the smallest of them all, consisting of a single pistol: the Glock 42. The smallest and least powerful of all calibers the company has endorsed, the nature of the .380 ACP round makes it only suitable for a modern subcompact design.

The .380 ACP round was invented in 1908 by inventor John Moses Browning. The early 1900s were perhaps Browning’s most prolific and influential period, with the invention of firearms such as the M1911 handgun, M2 .50 caliber machine gun, and .380 ACP and .45 ACP calibers. While the round enjoyed a brief run of success as a pistol round in European armies before World War II, after the war standardization on the larger, more powerful 9-millimeter parabellum edged out the smaller round in military service, becoming a civilian caliber.

The .380 ACP, with a handful of individual exceptions, is a subsonic round. Most iterations range between 75 and 95 grains. The Federal .380 ACP full metal jacket round weighs 95 grains, hits with the force of 203 foot-pounds at the muzzle, and moves at 980 feet per second. By comparison, the 9-millimeter (.350) Federal FMJ round is approximately the same size, at 364 foot-pounds packs more than sixty percent more energy and travels at 1,150 feet per second.

The advantage to .380 ACP is not power or velocity but lighter recoil. A .380 pistol should, all things being equal, be easier to place rounds on target than a 9-millimeter pistol. Thus a tradeoff between the two calibers: accuracy versus damage. Accuracy, placing rounds where you want them will get you damage, but damage will not get you accuracy.

Thus the argument for a pistol like the Glock 42. Although not as powerful as its cousin, the subcompact 9-millimeter Glock 26, the Glock 42 is more controllable. The .380 caliber, although relatively low-powered, also has more than a century of load development and is capable of reaching up to 294 foot-pounds with Buffalo Bore +P rounds.

The Glock 42 is the smallest pistol in Glock’s lineup, with an overall length of 5.94 inches. The G.42 also has the shortest barrel length of any pistol, at just 3.25 inches. It is the only Glock to break the one-inch width barrier, being only .98 inches wide.

Glock’s .380 offering is also by far the lightest of the company’s pistols. It weighs just 13.76 ounces unloaded, rivaling lightweight revolvers such as the Ruger LCR. The next heavier pistol in Glock’s lineup is the 9-millimeter single stack Glock 43 that weighs seventeen ounces unloaded. Even loaded with six rounds of .380 ammunition, the Glock 42 is still two ounces lighter than the Glock 43.

In the right hands, the Glock 42 pistol could conceivably become as deadly as its larger caliber brethren. The smallest Glock, it is also suitable for whom concealability is a major purchase factor. While not for everyone, the combination of Glock’s pistol platform and John Browning’s small automatic caliber is still a compelling choice for users who combine both skill and discretion.

Kyle Mizokami is a writer based in San Francisco who has appeared in The Diplomat, Foreign Policy, War is Boring and The Daily Beast. In 2009 he co-founded the defense and security blog Japan Security Watch. This first appeared earlier and is being reposted due to reader interest.

Image: Creative Commons.

Vaccines Are Japan’s New Tool to Counter China

Foreign Policy - Fri, 23/07/2021 - 20:43
Despite its worsening pandemic, Tokyo’s vaccine diplomacy has gained traction.

Glock Who? The Heckler & Koch VP9 9mm Might Be Even Better

The National Interest - Fri, 23/07/2021 - 20:28

Richard Douglas

Guns,

If you haven’t owned a firearm by Heckler & Koch before, you owe it to yourself to get one.

Here's What You Need to Remember: What everyone at the range wants out of a pistol is one that is more accurate than them. The HK VP9 certainly delivers in this regard. Especially if you’re a beginner just learning how to shoot, a weapon like the VP9 is an excellent option to get you started.

The HK VP9 is a full-sized striker-fired pistol made by Heckler & Koch. Often compared to the Glock, the VP9 actually gives the more common polymer pistol a run for its money. In fact, if you’ve used a Glock and felt underwhelmed, you’ll want to get your hands on a VP9. This modern European firearm would be great at the range, for self-defense, or even concealed carry. 

Accuracy 

What everyone at the range wants out of a pistol is one that is more accurate than them. The HK VP9 certainly delivers in this regard. Especially if you’re a beginner just learning how to shoot, a weapon like the VP9 is an excellent option to get you started.

As a full-sized pistol, the barrel length makes for not only an accurate shot, but also a longer sight radius when compared to, say, the Glock 19.

The sights themselves are luminescent, with two dots on the rear sights and a single forward sight. Lining up a shot is simple, and straightforward: everything you want out of a pistol.

Reliability 

If you haven’t owned a firearm by Heckler & Koch before, you owe it to yourself to get one. In my experience, every HK gun I’ve been able to test has been reliable unerringly, and the VP9 is no exception.

This isn’t even taking into account the inherent reliability of the striker-fire platform, but I look forward to many long days at the range with the HK VP9.

Handling 

The handling of the HK VP9 deserves special mention. It seems the designers of this gun put ergonomics as a top priority, with a few key features that stand out among similar pistols.

First, the grip: the grip of the VP9 is molded, with a light texture that allows purchase without being aggressive. Notably, the grip is customizable, coming out of the box with small, medium, and large panels that can be fitted into the side and back of the grip however you’d like.

This means that you can, for example, fit a large grip on the backstrap with small ones on the side panels, or vice versa. The moddable grip is the perfect way to accommodate lefties, and is a feature not many pistols have right out of the box. The pistol itself is made to be ambidextrous, with the magazine and slide releases on both sides of the weapon.

One thing that might disappoint some shooters is the paddle-style magazine release. Paddles tend to be unpopular in the United States, and for a reason: this one is just a little awkward to hit, which forced me to shift my grip in order to reach it. If you absolutely hate the paddle-style magazine release, I recommend looking into the HK VP9-B, which replaces the paddle with a button.

Lastly of note is the two polymer wings on the back of the slide, just below the rear sights. These little things are a massive help in pulling the slide back, especially if you’re wearing gloves or the gun is wet. Any feature that makes the operation of a firearm smoother is a good thing in my book.

Trigger 

The trigger, according to HK, has a pull of 5 lbs, 4 oz, which is comparable to other full-sized polymer-based pistols (read: Glocks). HK also claims that the VP-9’s trigger is “best-in-class,” surpassing all its competitors, and I don’t disagree.

I also don’t think that’s a major accomplishment, however. In general, the trigger is smooth on the take up and has a decent break. It features ridges that assist your trigger finger with the pull. It’s better than the Glock, for sure, but I’d say it’s fairly middle-of-the-pack for a factory trigger.

If you see this pistol getting a lot of use from you, an aftermarket trigger would be a simple upgrade.

Magazine & Reloading 

The HK VP9 comes with two 15-round magazines of 9x19mm ammunition. Cutouts at the base of the magazine make stripping them easier, a quality-of-life feature that I like seeing in my firearms.

Again, the paddle-style release isn’t popular, but works just fine as an ambidextrous magazine release once you get used to it. I found using my trigger finger (as opposed to my thumb) worked better, but I often forgot to do that while actually shooting. It requires a different type of muscle memory, which anyone can develop with time.

Also of note is a loaded chamber indicator on the back: a red dot just below the rear sights. While a nifty feature, I don’t think it’s necessary for anyone who knows how to safely handle a gun, and the loaded chamber indicator can, like every other mechanical part of a firearm, sometimes malfunction.

As a 9mm pistol, the VP9 has a wide array of different bullets available, and it can also eat just about all of them thanks to masterful construction by Heckler & Koch.

Length & Weight 

If you’ve held a Glock before, you basically know what it’s like to hold a VP9. The VP9 measures 7.34” long, 1.32” wide, and 5.41 tall, which is almost the same size as the Glock 17. Empty, the VP9 weighs 25.56 oz, which is slightly more than the Glock 17’s 22 oz.

While some might consider it too large for concealed carry, especially compared to subcompact pistols such as the Ruger LCP, the VP9 is still a solid option provided you have a decent belt and holster for it. Even if not, it’s still a great size for a home defense option.

Recoil Management 

Being a 9mm full-size pistol, the felt recoil on the HK VP9 is fairly soft and easy to manage, despite its lightweight.

My only complaint in this regard is the high bore axis of the gun. While the backwards recoil of the shot is soft, the muzzle flip caught me off guard at first and took a few rounds to get used to. Overall not a big issue.

Price 

The MSRP of the VP9 sits at $719, which is quite the investment for the average buyer.

However, the gun is a few years old by now, making them fairly easy to find on sale. If you can pick up a VP9 for $600 or lower, in my opinion, it’s without a doubt a worthwhile investment if you’re looking for a full-size, striker-fired pistol.

My Verdict? 

The HK VP-9 is a solid 9mm workhorse pistol that you can take to the range or carry for self-defense.

For those who just hate the paddle-style magazine release (which I totally understand), I recommend looking into the VP9-B, which features a button release but otherwise is largely the same pistol.

If you don’t yet own a striker-fired pistol and want to, the HK VP9 is a solid choice as a dependable sidearm with HK’s time-tested reliability. It will without a doubt be worth the cost of purchase, measured over its long lifespan.

Richard Douglas is a firearms expert and educator. His work has appeared in large publications like The Armory Life, Daily Caller, American Shooting Journal, and more. In his free time, he reviews optics on his Scopes Field blog.

Image: Wikimedia Commons

Pages